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Introduction

The main purpose of this book is to describe the capabilities of SQL for
implementing complex logic and specific features of Oracle SQL dialect,
in particular. SQL, and especially Oracle dialect, are extremely powerful
languages that allow you to get the result in a highly scalable fashion with
very little code.

The book is dedicated to readers who have working experience with
any relational DBMS as well as basic SQL knowledge. In particular, it’s
good to understand that SQL is a declarative language so it describes what
to get rather than how to get the result. Also it’s highly desirable to know
what a query plan is and how to read it.

The first part provides a thorough overview of SQL capabilities in
Oracle for selecting data as well as some basic SQL concepts. Information
regarding the Cost Based Optimizer intentionally was minimized so the
reader is not getting bogged down in minutiae and can concentrate on
features for implementing business logic and understanding mechanics
of the SQL engine. However, it was impossible to skip some concepts so a
separate chapter is dedicated to query transformations.

Oracle capabilities and features keep evolving from one version
to another so sometimes different Oracle versions 10g (10.2.0.5), 11g
(11.2.0.4), and 12¢ (12.1.0.2, 12.2.0.1) are referred to highlight these
changes. While introducing new functionality Oracle also aims to fix
existing bugs so I tried not to mention bugs that are already fixed and are
not important for describing possibilities of SQL. It’s very important to
keep in mind that such Oracle evolution occurred because best practices,
which were actual 5, 10, or 15 years ago, may be not the best approach at
all on new versions.

ix



INTRODUCTION

The goal, on one hand, was to provide comprehensive analysis of the
functionality but, on the other hand, to minimize the number of pages.

So narration in almost every chapter quickly flows from basic concepts to
complex details. Sometimes the reader may want to ask questions that will
be answered later on in the text so just keep reading and hopefully you will
find required clarifications or additional details.

The book’s second part covers a number of real-life tasks that can be
solved using Oracle SQL dialect. Sometimes PL/SQL solutions are also
provided just to highlight current limitations of SQL or to demonstrate that
PL/SQL may be a preferable solution from a performance point of view
even if an SQL solution looks concise and easy. You can find a bunch of
real cases when PL/SQL is better than Vanilla SQL in the first chapter of
PartII.

I do not see a reason to collect algorithmic quizzes that require only
PL/SQL programming because PL/SQL is yet another procedural language
with some OOP extensions, so the reader can find various books dedicated
to algorithms and programming and try to implement those programs in
PL/SQL. To understand PL/SQL advantages to compare to an ordinary
procedural language, please refer to note [8] in the Appendix. Also PL/SQL
has a number of features to effectively interact with the SQL engine and
note [9] in the Appendix may be a good source to begin with.
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Features and Theory

Chapters 1-10 are organized to follow the list below of Oracle SQL features:

1. Alljoins can be implicitly specified in the query;
however sometimes it makes sense to use
subqueries, for example, for a more efficient way to
implement an ANTI/EQUI join. Correlated scalar
subqueries may be more efficient than outer joins
because of scalar subquery caching.

2. Query transformations make it possible for two
queries with quite different text to have the same
plan and performance. On the other hand, query
transformations are not a universal panacea and
sometimes manual query refactoring is required to
achieve the best performance.

3. Analytic functions are an invaluable feature that
helps to implement tricky logic without joins. On the
other hand, they almost always require a sort, which
may be an issue on big data volumes.

4. Aggregate functions allow us to group data and
calculate aggregate values as well as implement
some complex flattening or pivoting logic.
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5. Connect by is the best tool to traverse hierarchies
or generate lists; however it should not be used
to traverse graphs despite built-in capabilities to
handle cycles if performance is critical.

6. Recursive subquery factoring extends capabilities
of traversing hierarchies in a way that you can
refer values calculated on a previous level. When
recursive subquery factoring is used for iterative
transformations of a dataset you should take
into account that a new recordset is generated
on each iteration, which leads to intensive
memory consumption. A functional advantage
in comparison to a model clause is that you can
calculate multiple measures on each step. In case of
a model clause, the first measure is evaluated for all
specified rows, then the second one, one and so on.

7. Model is the most powerful SQL feature but it’s
shining in quite specific cases. Model may require
intensive CPU and memory consumption and does
not scale well enough for millions of rows; however
performance can be dramatically improved in case
of parallel execution of partitioned models.

8. Row pattern matching adds noticeable flexibility
for analysis of recordsets. This feature is the only
way to solve a wide range of tasks in pure SQL in
a scalable and efficient manner, and in addition it
demonstrates a bit better performance for those
tasks that can also be solved using analytic functions.
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9. One query block may contain various clauses
including joins, aggregate and analytic, or even
mixes of advanced features like model clause and
pattern matching. It’s important to understand how
this will be executed from a logical point of view and
what are the pros and cons of using inline views.

10. Ttwas proven that SQL is Turing complete language
and for academic purposes it was shown how to
implement arbitrary algorithms using an iterative
model. SQL is a declarative language though and
was designed to manipulate data and not for
iterative computations.

Tom Kyte wrote many times over the years, “You should do it in a single
SQL statement if at all possible.” I'd like to elaborate on this statement a
little bit. Even if we remove from consideration advanced features like
recursive subquery factoring, model clause, row pattern matching, and
connect by, there are some tasks that can be solved more efficiently using
PL/SQL. Various examples will be considered in Chapter 11 to provide more
background.



CHAPTER 1

Joins

Most real-life queries combine data from multiple tables instead of
querying a single table. Logic may be encapsulated in a view to hide
complexity from the end user, but the database accesses multiple tables
anyway to get the result set. It’s not necessary that data from all tables in a
query appear in the result; some tables may be used to filter out data from
other tables, for example.

Data from two tables may be combined using join (a join keyword is
not mandatory as it will be shown later), subquery (may be correlated or
not), lateral view (starting with Oracle 12c), or set operators (union/union
all/intersect/minus).

Any logic implemented using set operators or subqueries may
be rewritten with joins, but this may not be always optimal from a
performance point of view. Moreover, semantically equivalent queries may
be rewritten into the same query after query transformations are applied
(see details in Chapter 2, “Query Transformations”) or may have the same
execution plan even if they have not been rewritten into the same query.
Lateral views can be imitated using a table operator on older versions.

Looking forward, let me mention that some queries that use only one
table may be not very easy to understand and may contain quite complex
logic, but that is a rare case (a lot of such queries you can find in Part II).

This chapter covers joins (both ANSI and traditional Oracle outer joins
syntax) along with some details about subqueries, lateral views, and join
methods.

© Alex Reprintsev 2018 5
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CHAPTER 1 JOINS

ANSI Joins

The following tables will be used for demonstration.

Listing 1-1. Tables for demonstration

create table ti(id, name) as
select 1, 'A" from dual union all select 0, 'X' from dual;

create table t2(id, name) as
select 2, 'B' from dual union all select 0, 'X' from dual;

e Crossjoin (also called Cartesian product). It returns all
possible combinations of two table’s rows.

Listing 1-2. Cross join

select *
from t1
cross join t2;

ID N ID N
1A 2B
1A 0 X
0 X 2B
0X 0X

e Inner join - join type that returns those and only those
rows from both joined tables satisfying a join predicate
(i.e., predicate evaluates into TRUE).



CHAPTER 1 JOINS
Listing 1-3. Inner join

select *

from t1

join t2
on t1.id = t2.id;

The table before the join keyword is called a “left joined table,” and the
table after the join keyword is called a “right joined table.” For an inner join
it does not matter which table is left and which one is right, as the result
will always be the same for the same tables and join predicate.

A predicate may not always be an equality condition; it can be any
expression that evaluates into TRUE, FALSE, or UNKNOWN. UNKNOWN
acts almost like FALSE,; if a join predicate evaluates into UNKNOWN
for given rows from two tables, then they will not be part of the result
set. However, if atomic predicates are combined using AND, OR, NOT
conditions, then the result may be different if the subexpression evaluates
to UNKNOWN and not to FALSE. For example, NOT FALSE evaluates to
TRUE, but NOT UNKNOWN evaluates to UNKNOWN.

Speaking about joins, the terms “condition,” “predicate,” and “criteria”
are interchangeable.

It’s not mandatory that columns from both tables should be used in the
predicate. “t1.id > 0” is also a valid join condition. All rows from table t2
satisfy this condition and only one row from table t1 does.
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Listing 1-4. Inner join with predicate containing only one table

select *

from t1

join t2
on ti1.id > 0;

ID N ID N
1A 2B
1A 0 X

If a join condition evaluates into true for some row from one table
and multiple rows from another one, then that row will be repeated in the
result multiple times. For example, join condition «t1.id <= t2.id»in
the below example evaluates to true for row with id = 0 from the left join
table and two rows from the right joined table so row with id = 0 appears
in the result twice. The same reasoning is valid for row with id = 2 from the
second table.

Listing 1-5. Inner join with non-equality predicate

select *

from t1

join t2
on t1.id <= t2.id;

IDN IDN
0 X 0 X
0 X 2B
1A 2B
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e OQuter join - type of join that returns the same rows as
inner join (i.e., rows from both tables that match join
condition and) and rows from left joined table (for left
join) or right joined table (for right join) or both tables
(full join), which do not match the join condition along
with NULL values in place of other table’s columns.

Listing 1-6. Left outer join

select *
from t1
left join t2
on t1.id = t2.id;

ID N ID N
0 X 0 X
1A

Listing 1-7. Right outer join

select *
from t1
right join t2
on t1.id = t2.id;

ID N ID N
0 X 0 X
2B
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Listing 1-8. Full outer join

select *
from t1
full join t2
on t1.id = t2.id;

ID N ID N
0X 0 X

2B
1A

The unnecessary keyword “outer” was not used in Listings 1-6, 1-7, or 1-8
because keywords left/right/full indicate then that the join is outer. Similarly,
if none of the keywords left/right/full are used in join, then it’s inner, so it does
not make sense to specify this explicitly using an “inner” keyword.

As arule, developers do not use right join in real-life tasks because it’s
always possible to use left join instead, which makes the statement easier
to understand and improves readability.

When multiple tables (data sets) are joined in a query, then Oracle
joins the first two and after that joins the resulting data set with the third
data set etc. In case of inner joins, there are no logical limitations on the
order of joins and CBO (Cost Based Optimizer) can join tables in any
order irrespective of how tables are listed in the query text. For ANSI outer
joins, the order of joins in the query matters - see section “Clearness and
Readability” for more details.

Other Types of Joins

o Equijoins. If all join conditions contain equality
operators, then join is called equi join; otherwise join
is called non-equi (Theta) join. Listing 1-3, Listing 1-6,
Listing 1-7, and Listing 1-8 are examples for equi join.

Listing 1-4 and Listing 1-5 are non-equi joins.
10



CHAPTER 1 JOINS

A special case of an equi join is a natural join. A Natural join uses
an implicit join condition, which are equality predicates on common
columns from both tables (i.e., columns with the same names). This
introduces potential danger because if table structure changes, then the
join condition may change as well.

Listing 1-9. Natural join

select * from t1 natural join t2;

It’s possible to specify whether a natural join is inner or outer.

Listing 1-10. Outer natural join

create table t(id, name, dummy) as select 1, 'A', 'dummy' from
dual;
select * from t1 natural left join t;

ID N DUMMY
1 A dummy
0 X

If there are no common columns in both tables, then natural join will
be effectively cross join.

Another form of equi join on the same columns is named columns
join. It allows us to list all columns for join conditions and preserve join

conditions even if table structure changes.

11
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Listing 1-11. Named columns join

select * from t1 join t2 using (id);

When using this syntax, a common column only from one table
appears in the result. The same happens in case of a natural join in
Listing 1-9 and Listing 1-10.

e Semijoins. This type of join happens in case of using
conditions like “in (subquery)” or “exists (correlated
subquery)”. Result contains column only from one table
and only one row is returned from that table even if
multiple rows from the subquery satisfy the condition.

Listing 1-12. Semi join

create table to(id, name) as
select 0, 'X' from dual union all select 0, 'X' from dual;

select t1.* from t1 where ti.id in (select id from to);

select t1.* from t1 where exists (select id from t0 where
t1.id = to.id);

12
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select t1.* from t1 join t0 on t1.id = to0.id;

Anti joins. Work similarly to semi joins but return rows
with no matches from the second table. Anti join appears
when using predicates “not in (subquery)” or “not exists
(correlated subquery).” The result will have no rows when
using “notin” and the subquery contains NULL values.

If the condition evaluates to UNKWNOWN for some
rows and the “not exists” condition, then those rows will
not be part of results; but result is not necessarily empty
if the table in the subquery has NULL values for joining
columns. This logical difference can be seen in the query
plan operation name - HASH JOIN ANTI NA.

Listing 1-13. Anti join

select t1.* from t1 where t1.id not in (select id from to);

JOINS

select * from table(dbms xplan.display cursor(format => 'basic'));
select t1.* from t1 where not exists (select id from to where

t1.id = to0.id);
select * from table(dbms xplan.display cursor(format => 'basic'));

SELECT STATEMENT | |
HASH JOIN ANTI NA | |
TABLE ACCESS FULL| T1 |
TABLE ACCESS FULL| To |

13



CHAPTER 1 JOINS

| 0 | SELECT STATEMENT | |
| 1| HASH JOIN ANTI | |
| 2| TABLE ACCESS FULL| T1 |
| 3| TABLE ACCESS FULL| To |

Here and in many following examples, output from SQL*PLUS may be
trimmed for readability and formatting purposes.

Some SQL engines allow us to explicitly specify SEMI/ANTI. For
example, Cloudera Impala has keywords left/right semi join, left/right
anti join.

Listing 1-14. Cloudera Impala ANTT join syntax

> select * from t1 left anti join t2 on t1.id = t2.id;
+----+

| id |

+----t

N

+----t

Fetched 1 row(s)

> select * from t1 right anti join t2 on ti.id = t2.id;
+----+

| id |

+----+

|2 |

+----t

Fetched 1 row(s)

14
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Oracle-Specific Syntax

The ANST join syntax was introduced in Oracle 9i thus before that in order
to join tables all of them should be specified in the from clause and join
conditions in the where clause. Oracle-specific syntax (also called Oracle
native syntax) for outer joins was available much earlier, including versions
such as Oracle 5.

Listing 1-3 with inner join can be rewritten in the following way, as
shown in Listing 1-15.

Listing 1-15. Another form of inner join

select * from t1, t2 where t1.id = t2.id;

Even though this statement does not have the keyword “join,” it fully
complies with the ANSI standard.

Before ANSI support, the only way to specify that join was left or right
was to use Oracle-specific syntax. The construction (+) near column name
indicates that join is outer. Left and right outer joins from Listing 1-6 and
Listing 1-7 can be expressed in the following way, as shown in Listing 1-16.

Listing 1-16. Oracle native syntax for left and right outer join

select * from t1, t2 where t1.id = t2.id(+);
select * from t1, t2 where t1.id(+) = t2.id;

In the first case table t1 is an inner table and table t2 is a left outer
table; in the second case table t1 is a right outer table and table t2 is an
inner table.

A full outer join cannot be expressed using native syntax in a way so
that each table is used only once. As a rule, developers imitated it using
two queries combined using union all.

15
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Listing 1-17. Imitation of full join using Oracle native syntax

select *
from t1, t2
where t1.id = t2.id(+)
union all
select *
from t1, t2

where t1.id(+) = t2.id
and t1.id is null;

Speaking about outer joins, it’s very important to understand concepts
of “pre-join” and “post-join” predicates (Metalink Doc ID 14736.1). As
it was mentioned earlier, in the ANSI outer join description, if there is
no matching row in the outer table, then columns in the result set are
populated with NULL values. The difference between pre-join and post-
join predicates is that pre-join predicates are evaluated before NULL
augmentation while post-join predicates are logically evaluated after it. In
other words, pre-join can be considered as join predicates and post-join as
filer predicates.

Listing 1-18. Pre-join and post-join predicates in Oracle native
syntax

select *
from t1, t2

where t1.id = t2.id(+)
and t2.id is null;

16
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Expression “t1.id = t2.id(+)” in Listing 1-18 is a pre-join predicate
and “t2.id is null” is a post-join predicate. Row with id = 1 from table t1
does not have a matching row from table t2 for the join condition “t1.1id
= t2.1id(+)” so NULL values are populated for columns from t2 and after
that filter by “t2.id is null”is applied.

It's important to mention that a filter predicate by an inner table
may be (will be) applied before joining but this does not violate the
definitions of pre-join and post-join predicates. This is part of optimization
and you can find additional details at the end of Chapter 2, “Query
Transformations” where the “selection” operation is mentioned.

Please analyze which predicates are pre-join and post-join in Listing 1-19
(answer will be given right after the code snippet).

Listing 1-19. Pre-join and post-join predicates

create table t3 as
select rownum - 1 id, mod(rownum, 2) sign from dual connect by
level <= 3;

1)

select *
from t3
left join t1
on t1.id = t3.id
order by t3.id;

ID SIGN ID N
1 0 X
1A

17
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2)

select
from
left
on

and
order

3)

select
from
left
on
where
order

4)

select
from
where
and
order

18
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ID SIGN ID N
1
0 1A
1
5)
select *
from t3, t1

where t1.id(+) = t3.id
and t1.id = 1
order by t3.id;

The first query simply demonstrates the left outer equi join. Predicate
“t1.id = 1” in the third and fifth queries is post-join while a similar
predicate in the second and fourth queries is pre-join. In the fourth query
we use (+) to mark the predicate as pre-join while in the second case it’s
pre-join because it’s part of the outer join clause.

The concept of pre/post predicates makes sense only in case of outer
joins. The mandatory requirement for an outer join is to have a predicate
that contains columns from both tables and (+) near one of those columns.

Let’s consider the following two queries.

Listing 1-20. Outer joins and presence of (+)

select *
from t3, t1
where 0 = 0

and t1.id(+) > 1
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order by t3.id;
no rows selected

select *
from t3, t1

where nv12(t3.id, 0, 0) = nv12(t1.id(+), 0, 0)
and t1.id(+) > 1

order by t3.id;

The first query returned no rows because it was not specified that
tables are an outer join. However, in the second query it’s explicitly
specified that t1 is the left outer table by using a predicate that always
evaluates to TRUE.

If some columns from the table are marked with (+) while others are
not, then Oracle may apply transformation “outer to inner join conversion”
(more details about query transformations can be found in the next
chapter).

Listing 1-21. Outer joins converted into inner ones

select * from t1 left join t2 on t1.id = t2.id where t1.name =
t2.name;

select * from t1, t2 where t1.id = t2.id(+) and ti.name =
t2.name;

Using the outer join syntax (whether it's ANSI or Oracle native) does
not makes sense in such cases and it may be very misleading so it should
always be avoided.
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Sometimes it may be a bit challenging to specify that the predicate is
pre-join using Oracle native syntax. If a pre-join predicate contains either
both tables or the outer table, it’s quite straightforward to specify it as was
shown in Listing 1-19, the fourth case. However, if the pre-join predicate
contains only an inner table then we need to use a column from the outer
table as well to define pre-join nature of the predicate.

Listing 1-22. Pre-join predicates on inner table in ANSI syntax

select *
from t3
left join t1
on t3.id = t1.id
and t3.sign =1

order by 1;
ID SIGN ID N
0] 1 0 X
1 0
2 1

So to indicate that a predicate on an inner table is pre-join, we can use,
for example, a trick with rowid of the outer table.

Listing 1-23. Pre-join predicate on inner table and trick with rowid

select *

from t3, t1
where t3.id = t1.id(+)

and nvl2(t1.rowid(+), t3.sign, null) =1
order by 1;
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ID SIGN ID N
1 0 X
0
1

Another approach is to use a case expression (more details about this
approach can be found in the next section - “Limitation of the Oracle
Native Syntax”), which can be easily expressed with decode for equi
conditions.

Listing 1-24. Pre-join predicate on inner table and approach with
case (decode) expression

select *

from t3, t1
where case when t3.sign = 1 then t3.id end = t1.id(+)
order by 1;

ID SIGN ID N
0 X
select *
from t3, t1
where decode(t3.sign, 1, t3.id) = t1.id(+)
order by 1;
ID SIGN ID N
1 0 X
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The left part of the case expression evaluates to t3.id only if the
condition “t3.sign = 1” is met and right part of the expression
indicates that tables are outer joined. Unlike trick with rowid, in this
case both predicates from the original query are combined into a single
predicate.

ANSI vs. Oracle Native Syntax

Both ANSI and native syntax have pros and cons. Some consider ANSI
syntax as syntactic sugar, because it improves readability, but eventually
queries are transformed into native syntax by an SQL engine. However,
there are two exceptions: full join and outer join partition by. This means
it'’s not possible to achieve the same execution plan by using Oracle
native syntax. In all other cases, a query in ANSI syntax has a semantically
equivalent form in native syntax with the same query plan; however,

it was not always possible to use such an equivalent before Oracle 12c
because some capabilities were not available for developers - in particular,
lateral views. The current subsection is dedicated to a comprehensive
comparison - ANSI vs Oracle native syntax - and if you are not interested
in such details, then feel free to skip the comparison and proceed to the
conclusion at the end of the chapter.

Limitation of the Oracle Native Syntax

1) IN, OR conditions are not allowed in pre-join
predicates.

The query from Listing 1-25 fails in Oracle 10g and
works fine from Oracle 11g onward. A possible

workaround may be using case-expression.
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Listing 1-25. In-predicate in Oracle 10g

select *

from t1, t2
where t1.id = t2.id(+)

and t2.id(+) in (1, 2, 3);

and t2.id(+) in (1, 2, 3)

*

ERROR at line 4:
ORA-01719: outer join operator (+) not allowed in operand of OR
or IN

select *
from t1, t2
where t1.id = t2.id(+)
and case when t2.id(+) in (12, 2, 3) then 1 end = 1;

The query from Listing 1-26 works fine in Oracle 10g
and it is equivalent to the original query if t2.id is an
integer.

Listing 1-26. Between-predicate

select *
from t1, t2
where t1.id = t2.id(+)
and t2.id(+) between 1 and 3

Some queries with in-predicates fail with ORA-01719 in all
versions including Oracle 11gR2 and Oracle12cR2. Case-
expression may be a workaround in such cases as well.
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Listing 1-27. In-predicate in Oracle 11g, 12c

select * from t1 left join t2 on t2.id in (t1.id - 1, t1.id + 1);

ID N ID N
0 X

1A 0X
1A 2B

select * from t1, t2 where t2.id(+) in (t1.id - 1, t1.id + 1);
select * from t1, t2 where t2.id(+) in (t1.id - 1, t1.id + 1)

*
ERROR at line 1:
ORA-01719: outer join operator (+) not allowed in operand of OR
or IN

select *

from t1, t2
where case when t2.id(+) in (t1.id - 1, t1.id + 1) then 1
end = 1;

An Oracle 12c query may be rewritten using a
correlated inline view. The keyword “lateral” is used
for this purpose.

Listing 1-28. Lateral view workaround for in-predicate

select *
from t1,
lateral (select *
from t2
where t2.id = t1.id - 1
or t2.id = t1.id + 1)(+) v;
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The Oracle Optimizer team defines lateral view in the following way: A
lateral view is an inline view that contains a correlation referring to other
tables that precede it in the FROM clause.

The ANSI syntax for cross join (cross apply) and outer join (outer
apply) with correlation support also has been added in Oracle 12c.

Listing 1-29. ANSI syntax for lateral views

select *
from t1
outer apply (select *
from t2
where t2.id = t1.id - 1
or t2.id = t1.id + 1) v

The following example also fails with ORA-01719 on all Oracle versions
with ANSI support.

Listing 1-30. Another example of in-predicate in Oracle 11g, 12c

select *
from t1
left join t2
on t1.id = t2.id

or t1.id = 1;
ID N ID N
0 X 0 X
1A 0 X
1A 2 B

select * from t1, t2 where t1.id
select * from t1, t2 where t1.id

t2.id(+) or t1.id = 1;
t2.id(+) or ti1.id
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ERROR at line 1:
ORA-01719: outer join operator (+) not allowed in operand of OR
or IN

Workarounds are the same - case-expression or lateral/outer apply.
It’s easier to explain the essence of the trick with case-expression
if predicates are combined using the conjunction (AND) but not the
disjunction (OR).

Listing 1-31. Conjunction predicates

select *
from t1, t2
where t1.id = t2.id(+) and t1.id = 1;
ID N ID N
1A
select *
from t1, t2

where t1.id = t2.id(+) and t1.id = nv12(t2.id(+), 1, 1);

select *
from t1, t2
where case when t1.id = t2.id(+) and t1.id = 1 then 1 end = 1;
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Predicate «t1.id = 1» was post-join in the first case, and in the
second case the trick with nvl2 was used to specify that comparison with
1is a pre-join predicate; and finally, case expression was used to specify
inseparability of the predicates: one condition in a case cannot be pre-join
while another one is post-join.

Let’s proceed to disjunction predicates.

Listing 1-32. Disjunction predicates

select *
from t1
left join t2
on t1.id = t2.id
or t1.id = 1;
ID N ID N
0 X 0 X
1A 0 X
1A 2 B

The join condition in this query means if t1.id = 1, then join this row
with all the rows from t2; otherwise do an equi join.

The straightforward translation into native syntax may look as what is
shown in Listing 1-33.

Listing 1-33. Disjunction predicates, native syntax

select *
from t1, t2
where t1.id = t2.id(+)
or t1.id = 1;
where t1.id = t2.id(+)
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ERROR at line 3:
ORA-01719: outer join operator (+) not allowed in operand of OR
or IN

Oracle does not allow you to execute this query; however we may
notice that the query does not make sense if «t1.id = 1» is post-join, but
the SQL engine is not supposed to take a logical meaning into an account.

So let’s try to explicitly specify that both conditions are pre-join
predicates but in this case query also fails with ORA-01719.

Listing 1-34. Disjunction, pre-join predicates, native syntax

select *
from t1, t2
where t1.id = t2.id(+)
or t1.id = nv12(t2.id(+), 1, 1);

Finally, if we use case-expression, it helps to specify the inseparability
of the conditions and get the desired result.

Listing 1-35. Disjunction, case-expression workaround

select *
from t1, t2
where case when t1.id = 1 or t1.id = t2.id(+) then 1 end = 1;

ID N ID N
0 X 0 X
1A 0 X
1A 2B

2) Pre-join predicate cannot contain scalar subqueries
(limitation removed in Oracle 12c).
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Listing 1-36. Pre-join predicates containing scalar subqueries

select *
from t3
left join t1
on t1.id = t3.id
and t1.id = (select count(*) from dual)
order by t3.id;

select *
from t3, t1
where t1.id(+)
and t1.id(+)
order by t3.id;
order by t3.id
*
ERROR at line 5:
ORA-01799: a column may not be outer-joined to a subquery

t3.1d
(select count(*) from dual)

One of the following workarounds may be applied:
e Inline view with the filter by scalar subquery
e Inline view with scalar subquery in select list

e Outer join of the t1 to both t3 and scalar subquery (works
from 12c onward; otherwise fails with ORA-01417)
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Listing 1-37. Workarounds for outer join with predicate containing

scalar subgery

select
from

where
order
select
from
where
and
order
select
from
where
and
order

t3.id, v.id, v.name

t3,

(select id, name from t1 where t1.id = (select count(*)
from dual)) v

t3.id = v.id(+)

by t3.id;

t3.id, t1.id, t1.name

(select t3.*, (select count(*) from dual) cnt from t3) t3, t1
t3.id = t1.id(+)

t3.cnt = t1.id(+)

by t3.id;

t3.id, t1.id, t1.name

t3, t1, (select count(*) cnt from dual) v

t3.id = t1.1id(+)

v.cnt = t1.id(+)

by t3.id;

3) Table may be outer joined to at most one other table

(limitation removed in Oracle 12c).

Listing 1-38. Table outer joined with two tables. Native syntax

select
from
where
and
and
and

*

t1, t2, t t3

t1.id = t2.1id

t1.id = t3.1d(+)
t2.name = t3.name(+);

t1.id = t3.1id(+)
*

ERROR at line 4:
ORA-01417: a table may be outer joined to at most one other table
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Inline view can be used as a workaround (please see transformed query
for Oracle 11g in Listing 1-40). The ANSI syntax may look as follows.

Listing 1-39. Table outer joined with two tables. ANSI syntax

select *
from t1
join t2
on t1.id = t2.id
left join t 13
on t1.id = t3.id
and t2.name = t3.name;

ID N ID N ID N DUMMY

If we check the transformed query for ANSI syntax, then Oracle 11g will
create an additional inline view (not lateral) with joined t1 and t2 while the
query for Oracle 12c will be as the query above in native syntax. Transformed
queries are shown below (details regarding how to see transformed queries
will be provided in the next chapter - “Query Transformations”).

Listing 1-40. Transformed queries for join with two tables
11g

select "from$ subquery$ oo3"."ID"  "ID",
"from$_subquery$ 003"."NAME" "NAME",
"from$ subquery$ oo3"."ID" "ID",
"from$_subquery$ 003"."NAME" "NAME",

"T3"."ID" "ID",
"T3"."NAME" "NAMEII’
“T3"."DUMMY" "DUMMY"
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from (select "T1".
"T1".
"T2".
"T2".

from "T1"

where "Ta".

IITII "T3II
where "from$ subquery$ 003"."NAME" = "T3"."NAME"(+)
and "from$ subquery$ 003"."ID" = "T3"."ID"(+)

12c

select "T1".
"T1".
"T2".
"T2".
"T3".
"T3".
"T3".

from "T1"

where "T1".
and "T2".
and "T1".

"Ip"
"NAME"
"Ip"
"NAME"
"ID"
"NAME"
"DUMMY"

CHAPTER 1 JOINS

“Ip"  "ID",
"NAME" "NAME",
“Ip"  "ID",
"NAME" "NAME"
“Ta", "T2" "T2"

"ID" = "T2"."ID") "from$_ subquery$ 003",

"1D",
"NAME"
"ID",
"NAME"
"1D",
"NAME",
"DUMMY "

"Tlll) IIT2|| "Tzll, IITII I|T3"

IIIDII —

IIIDII -

"T3" . IIIDII (+)
"NAME" -

"T3" . IINAMEII (+)

IIT2" . IIIDII

The last detailed example in this section is rather specific of native

joins than limitation. If a table joined to one other table as inner and

to another one as outer, then it may be not obvious how to specify the

predicate that contains only a column from that table. So in the example

below, table t2 joined with t1 as the outer table and with t3 as the inner

table and the question is this: how to specify predicate “tt2.name is not

null” in native syntax.
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Listing 1-41. Inner/outer joined table

create

table tt1 as select 'name' || rownum name from dual

connect by level <= 3;

create

table tt2 as select 'x _name' || rownum name from dual

connect by level <= 2;

create
select
from
left
on
left
on

table tt3 as select 'y x _name' || rownum name from dual;
tti.name, tt2.name, tt3.name

tt1

join tt2

tt2.name like '%' || tti.name || '%’

join tt3

tt3.name like '%' || tt2.name || '%'

tt2.name is not null;

NAME NAME

X_name1l y_X_namel
X_name2

If we try to use native syntax, then we are getting wrong results

regardless of whether we use (+) or not for “tt2.name is not null”

Listing 1-42. Inner/outer joined table and native syntax

select
from
where
and
and

34
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tt1, tt2, tt3

tt2.name(+) like '%' || tti.name || '%'
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NAME NAME NAME
namel X_namel  y X_namel
name2 X_name2

select tti.name, tt2.name, tt3.name
from tt1, tt2, tt3
where tt2.name(+) like '%' || tti.name || '%
and tt3.name(+) like '%' || tt2.name || '%
and tt2.name(+) is not null;

NAME NAME NAME
namel X_namel y_X_namel
name2 X_name2

name3 y_X_namel

To explicitly specify that that condition is a pre-join predicate for t2 and
t3 we can use the approach described in the section “Oracle-Specific Syntax.”

nvl2(tt2.name, 0, null) = nvl12(tt3.rowid(+), 0, 0)

So the predicate shows that t3 is outer joined to t2 and it evaluates to
TRUE if “tt2.name* is not null.

Taking into account specifics of the query, we can combine the
predicates below

and tt3.name(+) like '%' || tt2.name || '%
and nvl2(tt2.name, 0, null) = nvl2(tt3.rowid(+), 0, 0)

into one

and tt3.name(+) like nvl2(tt2.name, '%' || tt2.name || '%', null)

Another possible workaround for Oracle 12c is a lateral view; actually
for this query Oracle creates a lateral view after transformation from ANSI
syntax for all versions.
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Unnesting Collections

Let’s consider a table containing a nested table column.

Listing 1-43. Table with nested table column

create or replace type numbers as table of number

/

create table tc (id int, nums numbers) nested table nums store
as nums_t

/

insert into tc

select -1 id, numbers(null) nums from dual

union all select 0 id, numbers() nums from dual

union all select 1 id, numbers(1) nums from dual

union all select 2 id, numbers(1,2) nums from dual;

If we need to unnest a subtable if it's not empty, then it could be done
using one of the approaches below.

Listing 1-44. Unnesting nested table

select tc.id, x.column_value

from tc, table(tc.nums) x -- 1

--from tc, lateral(select * from table(tc.nums)) x -- 2
--from tc cross apply (select * from table(tc.nums)) x -- 3
--from tc cross join table(tc.nums) x -- 4

ID COLUMN_VALUE
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The second and third approaches work starting with Oracle 12c.
Let’s make the logic a bit more complicated: we need to unnest the
table and return even those rows where a nested table is empty.

Listing 1-45. Unnesting nested table preserving rows where it’s empty

select tc.id, x.column value
from tc, table(tc.nums)(+) x -- 1
--from tc, lateral(select * from table(tc.nums))(+) x -- 2
--from tc cross apply (select * from table(tc.nums))(+) x -- 3
--from tc outer apply (select * from table(tc.nums)) x -- 4
--from tc, table(tc.nums) x where nvl2(x.column_value(+), 0, 0)
= nvl2(tc.id, o, 0) -- 5
--from tc left join table(tc.nums) x on nvl2(x.column_value,

0, 0) = nvl2(tc.id, o, 0) -- 6
ID COLUMN_VALUE

A couple of important notes about this approach:

e Mixed syntax of cross apply and (+) returns correct result
but this is not documented and should be avoided.

o Always-true predicate containing two tables was used in
options #5 and #6. Option #5 returned incorrect result
because of bug on all versions up to Oracle 12cR1 (row with
id = 0 is missing). On the Oracle 12cR2, all options return all
rows from the original table along with unnested rows.
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If the nested table is not stored, then option #6 returns an incorrect
result on all versions including Oracle 12cR2.

Listing 1-46. Trying to unnest table using ANSI outer join

with tc as

(select -1 id, numbers(null) nums from dual

union all select 0 id, numbers() nums from dual

union all select 1 id, numbers(1) nums from dual

union all select 2 id, numbers(1,2) nums from dual)

select tc.id, x.column_value

from tc left join table(tc.nums) x on nvl2(x.column_value,
0, 0) = nvl2(tc.id, 0, 0);

ID COLUMN_VALUE

2

One of the descriptions of this behavior is Bug 20363558 : WRONG
RESULTS FOR ANSI JOIN ON NESTED TABLE.
A possible workaround for ANSI syntax for pre 12c versions is below:

Listing 1-47. Unnesting table using ANSI syntax on pre 12c versions

select tc.id, x.column value
from tc cross join table(case when cardinality(tc.nums) = 0
then numbers(null) else tc.nums end) x

If we use a nested varray instead of a nested table table, for example:
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Listing 1-48. Nested varray

create or replace type num_array as varray(32767) of number
/

create table tc (id int, nums num_array)

/

The result will be incorrect for option #6 irrespective whether varray is
stored or constructed on the fly.

So the query returns a correct result if we use an outer correlated table
operator - table(...)(+) or apply syntax for Oracle 12c. On the other hand, a
query may return an incorrect result if we try to use outer join (both ANSI and
native) and regardless of whether the nested table/varray is persisted or not.

Correlated Inline Views and Subqueries

It was already demonstrated several times how to implement correlated
inline views by using keywords lateral/apply. Before 12c similar functionality
could be achieved using a table operator and cast + multiset/collect (also
undocumented option in Oracle 11g is event 22829). An obvious disadvantage
of such approaches is necessity to create an SQL type for collection.

If we need to generate the number of rows equals to id for each row,
then we can use the approaches below for Oracle 12c.

Listing 1-49. Correlated inline views, 12¢

select t3.id, v.idx
from t3,
lateral (select rownum idx
from dual
where rownum <= t3.id
connect by rownum <= t3.id)(+) v;

select t3.id, v.idx
from t3
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outer apply (select rownum idx
from dual
where rownum <= t3.id
connect by rownum <= t3.id) v;

Pre Oracle 12c it could be achieved as demonstrated in Listing 1-50.

Listing 1-50. Correlated inline views, 11g

select t3.id, v.column value idx
from t3,
table(cast(multiset (select rownum
from dual
where rownum <= t3.id
connect by rownum <= t3.id) as sys.
odcinumberlist))(+) v;

select t3.id, v.column value idx
from t3,
table (select cast(collect(rownum) as sys.
odcinumberlist)
from dual
where rownum <= t3.id
connect by rownum <= t3.id)(+) v;

Option with cast + multiset is more preferable for performance
reasons.
In all cases, the result is the following:
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Strictly speaking, pre Oracle 12c we use an outer correlated table
operator instead of an inline view.

Yet another limitation for correlated subqueries (table operator
and cast + multiset/collect) for pre Oracle 12c versions was visibility of
correlation names only for one level deep. In the example below, m2,
m4, m5 can be calculated only in Oracle 12c (all expressions are logically
equivalent).

Listing 1-51. Visibility of columns from main table in table expression

select id,
greatest((select min(id) mid from t3 where t3.id >
t.id), 1) m1,
(select max(mid)
from (select min(id) mid
from t3
where t3.id > t.id
union
select 1 from dual) z) m2,
(select max(value(v))
from table(cast(multiset (select min(id) mid
from t3
where t3.id > t.id
union
select 1 from dual) as sys.
odcinumberlist)) v) m3,
(select max(value(v))
from table (select cast(collect(mid) as sys.
odcinumberlist) col
from (select min(id) mid
from t3
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where t3.id > t.id

union

select 1 from dual) z) v) m4,

(select value(v)
from table(cast(multiset (select max(mid)
from (select min(id) mid
from t3
where t3.id > t.id
union
select 1 from dual) z) as
sys.odcinumberlist)) v) m5
from t3 t
where t.id = 1;

It’s not always possible to simplify a (scalar) subquery so that it
contains only one level deep; a possible workaround in such cases for
pre Oracle 12 was encapsulating logic in UDF and then specifying it in
a select list or rewriting the query to use explicit joins instead of (scalar)
subqueries. In Oracle 12c scalar subqueries also should be used after
careful consideration because sometimes they may be incorrectly or
inefficiently transformed by the SQL engine.

The last important point in this section - lateral/apply does not
allow such a flexible correlation as collect/multiset. For example it’s not
possible to specify the column from the main table to start with. The
last query from Listing 1-52 fails with “ORA-00904: “T1” . “ID”: invalid

identifier” if we uncomment “t1.1d”
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Listing 1-52. Visibility of columns from main table in table

expression and lateral view

select

from

select
from

select
from

t1.%,
1.*
t1,
table(cast(multiset (select id
from t3
start with t3.id = t1.id
connect by prior t3.id + 1 = t3.id) as
numbers)) 1;

t1.%, 1.%
t1,
table (select cast(collect(id) as numbers)
from t3
start with t3.id = t1.id
connect by prior t3.id + 1 = t3.id) 1;

t1.%, 1.*
t1,
lateral (select id
from t3
start with t3.id = 0 -- t1.id
connect by prior t3.id + 1 = t3.id) 1;

ANSI to Native Transformation

JOINS

Let’s use the following tables and query to demonstrate transformation.
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Listing 1-53. Tables and query to demonstrate ANSI to native
transformation

create table fact as (select 1 value, 1 dim 1 id, 1 dim 2 id,
'A" type from dual);

create table dim 1 as (select 1 id, 1 dim n_id from dual);
create table dim n as (select 1 id, 1 value from dual);

create table map as (select 1 value, 'DETAILED VALUE' category
from dual);

select fact.*, map.*
from fact
join dim_1
on dim 1.id = fact.dim 1 id
join dim_n
on dim_1.dim n_id = dim_n.id
left join map
on fact.type in ('A', 'B', 'C")
and ((map.category = 'FACT VALUE' and map.value = fact.
value) or
(map.category = 'DETAILED VALUE' and map.value = dim n.
value));

Listing 1-54. Query after transformation into native syntax

select "FACT"."VALUE" "VALUE",
"FACT"."DIM 1_ID" "DIM 1_ID",
"FACT"."DIM 2_ID" "DIM_2_ID",
"FACT"."TYPE" "TYPE",

"VW_LAT_3C55142F"."ITEM 1 0" "VALUE",

"VW_LAT 3C55142F"."ITEM 2 1" "CATEGORY"
from "FACT" "FACT",

"DIM_1" "DIM_1",

"DIM_N" "DIM_N",
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lateral((select "MAP"."VALUE" "ITEM 1 0", "MAP"."CATEGORY"

"ITEM 2 1"
from "MAP" "MAP"

where ("FACT"."TYPE" = 'A" or "FACT"."TYPE"

'B' or
"FACT"."TYPE" = 'C")

and ("MAP"."CATEGORY" = 'FACT VALUE' and
"MAP"."VALUE" = "FACT"."VALUE" or
"MAP"."CATEGORY" = 'DETAILED VALUE' and
"MAP"."VALUE" = "DIM N"."VALUE")))(+)

"VW_LAT_3C55142F"
where "DIM 1"."DIM N_ID" = "DIM N"."ID"
and "DIM 1"."ID" = "FACT"."DIM 1_ID"

The crucial point here is that Oracle creates a non-mergeable lateral

view. A logically equivalent query in native syntax may be implemented as

the following (it’s not possible to implement a query without an additional

inline view for pre Oracle 12c versions because map table cannot be outer

joined to both fact and dim_n and query fails with “ORA-01417: a table

may be outer joined to at most one other table”).

Listing 1-55. Query manually rewritten into native syntax

select *
from (select fact.*, dim n.value as value 1
from fact, dim 1, dim_n
where dim 1.id = fact.dim 1 id
and dim 1.dim n_id = dim n.id) sub,
map

where case when decode(map.rowid(+), map.rowid(+), sub.type)

in (*A", 'B', 'C') then 1 end = 1
and decode(map.category(+), 'FACT VALUE', sub.value,
'DETAILED VALUE', sub.value 1) = map.value(+);
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The ANSI version has better readability, but in case of native syntax,
Oracle does not create a non-mergeable correlated inline view so that
it allows us to achieve better performance because the SQL engine
can use HASH JOIN in such cases. This join method is not possible for
lateral views.

A very important point is that if we use predicates for ANSI syntax
in the same form as they were for native syntax, then a lateral view is
not created.

Listing 1-56. ANSI syntax with predicates copied from native syntax

select fact.*, map.*

from fact
join dim_1

on dim 1.id = fact.dim 1 _id
join dim_n

on dim 1.dim n_id = dim n.id
left join map

on case when decode(map.rowid, map.rowid, fact.type) in

(‘A", 'B', 'C") then 1 end =1

and decode(map.category, 'FACT VALUE', fact.value, 'DETAILED
VALUE', dim n.value) = map.value

The query above transformed into the following and the VIEW
operation is absent in the query plan, which means there are non-
mergeable views in the query itself.

Listing 1-57. Transformed query for ANSI version with amended
predicates
select "FACT"."VALUE" "VALUE",

"FACT"."DIM_1_ID" "DIM 1_ID",

"FACT"."DIM 2 ID" "DIM 2 ID",

"FACT"."TYPE" "TYPE",
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"MAP"."VALUE" "VALUE",
"MAP"."CATEGORY" "CATEGORY"
from "FACT" "FACT",
"DIM 1" "DIM 1",
"DIM N" "DIM N",
"MAP"  "MAP"
where case when decode("MAP".ROWID(+), "MAP".ROWID(+),
"FACT"."TYPE") in ('A', 'B', 'C') then 1 end = 1
and "MAP"."VALUE"(+) = decode("MAP"."CATEGORY" (+),
"FACT VALUE', "FACT"."VALUE", 'DETAILED VALUE',
"DIM N"."VALUE")
and "DIM_1"."DIM N_ID" = "DIM N"."ID"
and "DIM 1"."ID" = "FACT"."DIM 1 ID"

Transformation ANSI to native continuously evolves from one
Oracle version to another, and some queries do not have lateral views
after transformation even though they led to lateral view creation in
older versions.

As it was mentioned earlier, full join and left/right join partition by are
not transformed into native syntax.

To demonstrate the latter, let’s consider the following requirement. For
each presenter from the table “presentation” display all days of the week
and number of presentations for each day.

Listing 1-58. Tables to demonstrate join partition by

create table week(id, day) as
select rownum,
to_char(trunc(sysdate, 'd') + level - 1,
'fmday',
"NLS_DATE_LANGUAGE = English')
from dual
connect by rownum <= 7;
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create table presentation(name, day, time) as
select 'John', 'monday', '14' from dual

union all

select 'John', 'monday', '9' from dual

union all

select 'John', 'friday', '9' from dual

union all

select 'Rex', 'wednesday', '11' from dual
union all

select 'Rex', 'friday', '11' from dual;

The result can be achieved by using the query below.

Listing 1-59. Join partition by

select p.name, w.day, count(p.time) cnt
from week w
left join presentation p partition by (p.name)
on w.day = p.day
group by p.name, w.day, w.id
order by p.name, w.id;

John monday
John tuesday
John wednesday
John thursday
John friday
John saturday
John sunday
Rex monday
Rex tuesday

R O O O O »r O O O N

Rex wednesday
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Rex thursday
Rex friday
Rex saturday

o O » O

Rex sunday

14 rows selected.

Listing 1-60. Final query after transformations

select "from$ subquery$ 003"."NAME 0" "NAME",
"from$_subquery$ 003"."QCSI_C000000000300000 2" "DAY",
count("from$ subquery$ 003"."TIME 4") "CNT"
from (select "P"."NAME" "NAME 0",
"w"."ID"  "ID 1",
"W"."DAY" "QCSJ_C000000000300000 2",
"P"."DAY" "QCSJ C000000000300001",
"p"."TIME" "TIME_ 4"
from "PRESENTATION" "P" partition by("P"."NAME")
right outer join "WEEK" "W"
on "W"."DAY" = "P"."DAY") "from$ subquery$ 003"
group by "from$ subquery$ 003"."NAME 0",
"from$ subquery$ 003"."QCSI_C000000000300000 2",
"from$_subquery$ 003"."ID 1"
order by "from$ subquery$ 003"."NAME 0", "from$
subquery$ 003"."ID 1"

“partition by (p.name)” means that all rows from the week table will be
joined for each name from the presentation table. The same result can be
achieved without this capability but it requires an additional join.

Listing 1-61. Workaround for join partition by
select w.name, w.day, count(p.time) cnt
from (select po.name, wo.*
from (select distinct name from presentation) po,
week w0) w,
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presentation p
where w.day = p.day(+)
and w.name = p.name(+)
group by w.name, w.day, w.id
order by w.name, w.id;

Let’s consider final query after transformations for SEMI join “select
t1.* from t1 where t1.id in (select id from to0)”

Listing 1-62. Transformed query for SEMI join
select "T2"."ID" "ID", "T1"."NAME" "NAME"
from "M12"."T0" "To", "M12"."T1" "T1"
where "T1"."ID" = "To"."ID"

There is no special notation for SEMI join predicates, thus a condition in
a final query looks like a simple equality predicate; however the join method
for the original query is HASH JOIN SEMI (similar reasoning applies to ANTI
joins as well). If you try to build a plan for a transformed query, then the
join method will be just HASH JOIN. So additional attention is required
when working with final queries after transformation - they are just a
representation of the transformed queries and may not be semantically
equivalent in all cases to the original query. We can add distinct and
tl.rowid to select a list to get what is required but performance is not the
same as for SEMI join - joining and applying distinct on top of it is not the
same as looking for one row satisfying a join condition for each row from t1.

It's possible to specify another join method (NESTED LOOPS SEMI in
this case) for the query or to completely disable all transformations using
optimizer hints.

select t1.* from t1 where ti.id in (select /*+ use nl(to) */ id
from t0);

select /*+ no_query transformation */ ti.* from t1 where t1.id
in (select id from t0);
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In the second case Oracle does a full scan of TO for each row from T1
(it may be index access though if there is an index on T0(id)) to find the
first match.

Listing 1-63. Query plan with disabled transformations

| Id | Operation | Name |
| 0 | SELECT STATEMENT | |
| 1| FILTER | |
| 2| TABLE ACCESS FULL| T1 |
| 3| TABLE ACCESS FULL| To |

1 - filter( EXISTS (SELECT 0 FROM "To" "T0" WHERE "ID"=:B1))
3 - access("ID"=:B1)

In general case, plans for an original query and transformed query
may be different and, as it was already mentioned, the final query after
transformation is an SQL-like representation of what will be eventually
executed.

In case of using a Cost Based Optimizer (CBO), original queries that
look quite different may be transformed into the same final query and
lead to the same execution plan because of query transformations.

On the other hand, the way a query is written has much considerable
influence on the query plan while using Rule Based Optimizer (RBO) final
query. In this case a query plan is built based on a predefined set of rules
and a very limited number of transformations. Many of the join methods
are not implemented for RBO; in particular, there is no SEMI JOIN.
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Listing 1-64. Query plan when built by RBO

select /*+ rule */ t1.* from t1 where t1.id in (select id from t0);

SELECT STATEMENT |
MERGE JOIN |
SORT JOIN |
TABLE ACCESS FULL | T1
SORT JOIN |
VIEW |
SORT UNIQUE |
TABLE ACCESS FULL| To

VW_NSO_1

4 - access("T1"."ID"="ID")
filter("T1"."ID"="ID")

CBO was introduced in Oracle 7.3 and has been greatly improved
since then; moreover RBO is deprecated since Oracle 10g and Oracle do
not recommend using it in any cases. The above example was provided to
demonstrate that some join methods were missing for RBO and also manual
rewriting of the queries may not be that important as it was in the past.

Clearness and Readability

Let’s use a simple model with a fact table containing two coordinates of a

single dimension.
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Listing 1-65. Trivial model for star schema

create table fact as (select 1 value, 1 dim 1 id, 2 dim 2 id
from dual);

create table dim_as (select rownum id, 'name'||rownum name
from dual connect by rownum <= 2);

If we need to get dimensional attributes for both coordinates, it can be
done using ANSI syntax as shown in Listing 1-66.

Listing 1-66. Using ANSI to join fact with dimensions

select *

from fact_ f

join dim_ d1 on f.dim 1_id = d1.id
join dim_ d2 on f.dim 2 _id = d2.id

Clearness and readability highlights for ANSI:

1) Join conditions for each dimension are separated
into a correspondent on clause. For inner joins and
complex join conditions it may be not obvious where
to specify predicates - in the where clause or in the
on clause. In such cases the next rule may help:
where clause should contain only filters by a fact
table. For outer joins there is no need for such a rule.

2) There is no need to create additional inline/lateral
views for outer joins. This feature also may be
considered as a disadvantage because readability
results in more problematic control on a query plan
(see also the section “Controlling Execution Plan”).

3) There is additional validation for join predicates. It’s
possible to use only those tables that listed before
the current table. For example, the query below will
fail with “ORA-00904: “D2” “ID”: invalid identifier.”
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Listing 1-67. Validation for predicates for ANSI syntax

select *

from fact f

join dim_ d1 on f.dim 1 id = d2.id
join dim_ d2 on f.dim 2_id = d2.id

In case of native syntax, all predicates are listed in a
where clause. Additional control may be achieved
by using inline views.

Also we can introduce various standards for
specifying predicates in a where clause but if a query
contain joins of, let’s say, 20 tables anyway, those
predicates will look a bit messy. If we use ANSI for
inner joins it’s possible to cross join all the tables and
then list all predicates in a where clause but no one
follows this ridiculous approach because separating
join conditions improves readability a lot.

4) ANSI syntax clearly defines for each predicate
the specific join it belongs to. In case of native
syntax it’s not always easy to specify if a predicate
contains only one table (that was shown in section
“Limitation of the Oracle Native Syntax”).

Flexibility of ANSI syntax allows us to write some cunning queries
that are not that easy to understand. I would not recommend using these
capabilities, but it’s important to know they exist.

So, changing the order of tables in from and join clauses for ANSI
syntax may impact the query result.

Results are different for the queries below because in in the first case,
Oracle joins t1 with t2 and then the result set with t3, while in the second
case it joins t2 with t3 and then the result set with t1.
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Listing 1-68. Changing join order for ANSI syntax

select t1.*, t2.*, t3.*
from t1
full join t2
on ti1.id = t2.id
join 13
on t2.id = t3.id
order by t1.id;

ID N ID N ID
0 X 0 X
2B

select t1.*, t2.*, t3.*
from t2
join t3
on t2.id = t3.id
full join t1
on t1.id = t2.id
order by ti1.id;

ID N ID N ID
0 X 0X 0
1A

2B 2

However, it’s possible to change the order of joins without changing
the order of tables in the query text.

55



CHAPTER 1 JOINS

Listing 1-69. Specifying join clause in place of table reference

select t1.*, t2.*, t3.*

from t1

full join (t2 join t3 on t2.id = t3.id) on t1.id = t2.id
order by t1.id;

ID N ID N ID
0 X 0 X 0
1A

2B 2

This query may look even more ambiguous if we remove brackets.
Nevertheless this functionality is documented and join_clause may be
specified in place of the table reference. In a trivial case it looks like the
following:

Listing 1-70. table_reference and join_clause

-- table reference in ()

select * from (dual);

-- join clause in ()

select * from (dual cross join dual);

Mixing Syntax

Some people prefer native syntax while others tend to use only ANSI
syntax. In rare cases, it may be acceptable to use both ANSI and native in
the same query but on different levels (or in different subqueries). This
could happen, for example, if the development standard in the team

is ANSI but it does not allow you to fix the plan because of inline views
creation under the hood, or you faced some ANSI bug or limitation

(see section “Limitations of ANSI”).
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It is more surprising that Oracle allows you to mix ANSI and

native syntax even in single from clause. The following examples will

demonstrate some bad practices. I do not think anyone should be using

this but it’s important to understand what is going on if you face such a

query.

So, if you specify ANSI inner join and add operator (+) to a join

condition, then, in fact, Oracle will execute it as an outer join.

Listing 1-71.

Original and transformed queries for mixed syntax

select * from t1 join t2 on ti1.id = t2.id(+)

select "T1".
“T1".

"T2".

"T2".

from "T1"
where "T1".

“Ip"  "ID",
"NAME" "NAME",
“Ip"  "ID",
"NAME" "NAME"
"T1", "T2" "T2"

IIIDII - "T2"."ID"(+)

Let’s proceed to the following query in Listing 1-72.

Listing 1-72.

Mixed syntax in from clause

select *
from t1, t2
left join t3
on t3.id = t2.id + 1;
ID N ID N ID
0 X 0 X 1
1A 0 X 1
0 X 2 B
1A 2 B
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Please note that tables t1 and t2 are listed using a comma while t3
was added using an ANSI join. The transformed query looks as shown in
Listing 1-73.

Listing 1-73. Transformed query for mixed syntax in from clause

select "T1"."ID" "ID",
"T1"."NAME" “NAME",
"T2"."ID"  “ID",
"T2"."NAME" “NAME",
"T3"."ID"  "ID"
from "T1" "T1", "T2" "T2", "T3" "T3"
where "T3"."ID"(+) = "T2"."ID" + 1

Let’s specify all joins in ANSI style and add one more condition.

Listing 1-74. Mixed query rewritten into ANSI along with additional
predicate

select *
from t1
cross join t2
left join t3
on t3.id = t2.id + 1
and t3.id = t1.id;

ID N ID N ID
1A 0 X 1
0 X 0 X
1A 2B
0 X 2B
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If we try to use mixed syntax for the above query, it will fail, which
means that only t2 is visible in an on clause for join with t3.

Listing 1-75. Mixed syntax and complex predicate

select *
from t1, t2
left join t3
on t3.id = t2.id + 1

and t3.id = t1.id;
and t3.id = t1.id
*

ERROR at line 5:
ORA-00904: "T1"."ID": invalid identifier

If we try to specify a predicate for joining t1 and t3 using (+) in a where
clause, then the query fails with ORA-25156.

Listing 1-76. Mixed syntax and predicates in where and on clauses

select *
from t1, t2
left join t3
on t3.id = t2.id + 1
where t3.id(+) = t1.id;
where t3.id(+) = t1.id
*
ERROR at line 5:
ORA-25156: old style outer join (+) cannot be used with ANSI
joins

It would be reasonable to raise «ORA-25156» always when a from clause
contains ANSI syntax and (+) operator or raise another exception, then
different join styles are used in a from clause but demonstrated examples
with mixed syntax work successfully on Oracle 10g, 11g, and 12c.
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Controlling Execution Plan

As already mentioned, some hints may become invalid while using ANSI
syntax because of lateral/inline views creation under the hood. Moreover,
some hints cannot be used with ANSI, particularly, qb_name. This hint
may be very useful when someone tries to specify tables from an inline
view in the main query hint.

Let’s check aliases for the queries below using “select * from
table(dbms_xplan.display_cursor(format => ‘BASIC ALIAS’));”.

Listing 1-77. Specifying gb_name hint
select --+ gb_name(q)
*
from t1
join t2
on t1.id = t2.id;

select --+ gb_name(q)
*

from t1, t2
where t1.id = t2.id;

The result is shown below (hint became invalid for ANSI syntax) in
Listing 1-78.

Listing 1-78. Aliases after using qgb_name

Query Block Name / Object Alias (identified by operation id):

1 - SEL$695B99D2
2 - SEL$695B99D2 / T1@SEL$1
3 - SEL$695B99D2 / T2@SEL$1
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Query Block Name / Object Alias (identified by operation id):

N
1 1
o O

/ T100
/ T200

w
1
10

Limitations of ANSI

Before Oracle 12c there was a limitation in using ANSI syntax in
subqueries. However I'd say that it was a bug rather than a limitation.

If we use a column from the main query in a join condition, then it fails
with ORA-00904.

Listing 1-79. Using column from main query in ANSI join predicate

select t3.id,
(select count(t2.rowid) + count(ti.rowid)

from t2
join t1
on t2.id = t1.id

and t2.id = t3.id) x
from t3
order by t3.id;

and t2.id = t3.id) x

*

ERROR at line 6:
ORA-00904: "T3"."ID": invalid identifier

We can get rid of the correlated scalar subquery and use explicit joins
instead to avoid error (t3.rowid is added to group by because there is no
guarantee that t3.id is unique).
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Listing 1-80. Using explicit joins instead of correlated scalar
subquery

select t3.id, count(t2.rowid) + count(ti.rowid) x

from t3

left join(t2 join t1 on t2.id = t1.id) on t3.id = t2.id
group by t3.rowid, t3.id

order by t3.id;

Scalar subqueries may be preferable for performance reasons because
of scalar subquery caching if t3.id has low cardinality.

If we move predicate “t2.id = t3.1d” into the where clause, then the
query works fine.

Listing 1-81. Moving predicate with column from main query into
where clause

select t3.id,
(select count(t2.rowid) + count(ti.rowid)

from t2
join t1
on t2.id = t1.id
where t2.id = t3.id) x

from 13
order by t3.id;
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This workaround is not always possible though, because the join may
be outer and with a condition containing column from the main query.
Query from Listing 1-82 was executed on Oracle 12c (it fails on older

versions).

Listing 1-82. ANSI outer join in scalar subquery

select t3.id,
(select count(t2.rowid) + count(ti.rowid)
from t2
left join t1
on t2.id = t1.id
and t3.id > 0
where t2.id = t3.id) x
from t3
order by t3.id;

We can avoid an error in 11g if we move the logic into a select list
expression, but this approach cannot be considered a proper workaround.
See Listing 1-83.

Listing 1-83. Avoiding error for ANSI outer join in scalar subquery

select t3.id,
(select count(t2.rowid) + decode(sign(t3.id), 1,
count(t1.rowid), 0)
from t2
left join t1
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t1.id
t3.1id) x

on t2.1id
where t2.id
from t3
order by t3.id;

A better approach would be to use an outer correlated table operator
(type numbers was defined in section “Unnesting Collections”) as shown

in Listing 1-84.
Listing 1-84. Using table operator with ANSI join in scalar subquery

select t3.id,
(select count(t2.rowid) + count(tt.column value)

from t2
left join table(cast(multiset (select nvl2(t2.rowid,
1, null)
from t1
where t2.id = t1.id
and t3.id > 0) as
numbers)) tt
on1=1
where t2.id = t3.id) x
from t3

order by t3.id;

And finally a query may be rewritten to use native joins, as shown in
Listing 1-85.
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Listing 1-85. Using native join instead of ANSI in scalar subquery

select t3.id,
(select count(t2.rowid) + count(ti.rowid)
from t2, t1
where t2.id = t3.1id
and t2.id = t1.id(+)
and decode(sign(t3.id), 1, 0) = nv12(t1.id(+), 0, 0)) x
from t3

order by t3.id;

The same issues occur while using ANSI and correlated subqueries in a
where clause, so this is not specific for scalar subqueries in a select list.

Summary

As arule, a query returns data from many tables (or one table occurs
multiple times) and data sets from different tables must be joined into

a single result set (except in cases when they are combined using set
operators - union/union all/intersect/minus). Joins may be explicitly
specified using a join keyword or implicitly using an Oracle native syntax
or subqueries. (ANTI) SEMI joins may be specified by using conditions
(not) in/exists.

The same logic may be implemented in a very different fashion, but
it’s not always possible to get the same plan for different but semantically
equivalent queries. During execution of a query, it’s getting converted into
native syntax and various transformations are applied - additional details
will be explained in the next chapter.

Speaking about ANSI vs. native syntax, it’s worth to mention that ANSI
provides better readability and clearness; however, native syntax allows
better control over an execution plan. Two types of ANSI joins - full and
outer partition by - cannot be expressed in native syntax, so that they have
the same execution plan as an ANSI equivalent.
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ANSI syntax was introduced much later than the native one and
initially had a huge number of bugs. However, as it was shown in the
section “Unnesting Collections,” some bugs still exist even in Oracle 12c
and may appear for both ANSI and native syntaxes.
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Query
Transformations

The same logic can be implemented using various but semantically
equivalent queries that look quite different but have the same plans and
performance. This is achieved as a result of query transformations -
original queries transform into the same final query.

For instance, the queries from Listing 2-1 have the same performance
and plans. The last one has minor difference though - the join method is
HASH JOIN ANTI NA while for all other queries it is HASH JOIN ANTI, so
the result set for the last query will be empty if t2.id has null values.

Listing 2-1. Different ways to implement ANTI join

select t1.* from t1 left join t2 on t1.id = t2.id where t2.id
is null;

select t1.* from t1 where not exists (select t2.id from t2
where t1.id = t2.id);

select t1.* from t1, t2 where t1.id = t2.id(+) and t2.id is
null;

select t1.* from t1 where t1.id not in (select t2.id from t2);
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To check applied transformations and final queries, one needs to set
an event 10053 or enable SQL Optimizer tracing before executing the
statement (detailed descriptions of these commands is out of the scope of
this book, additional information can be found in [1]).

Listing 2-2. Enabling tracing for transformations

alter session set events 'trace[rdbms.SQL Optimizer.*]';
alter session set events '10053 trace name context forever,
level 1';

Final query text will be in a tracing file in the section «Final query
after transformations:******* UNPARSED QUERY IS ******%,_For all above
queries it will be exactly the same (schema name was manually removed
from the statement) as shown in Listing 2-3:

Listing 2-3. Transformed query for ANTI join

SELECT "T2"."ID" "ID","T1"."NAME" "NAME" FROM "T2", "T1" WHERE
"Tl"."ID"="T2"."ID"

If you execute this query it will not return the expected result. That is
because there is no special notation for an ANTI join in a tracing file - even
though it exists in relational algebra. ANTI (or SEMI) joins are not the only
case when a query plan for a final query does not match the query plan for
the original query. There are many other examples and one of them will be
shown in Chapter 5, “Hierarchical queries: connect by” while explaining
how connect by + join + where works.

To check the final query after transformations, you can also use stored
procedure dbms_utility.expand_sql_text added in Oracle 12c (starting with
Oracle 11.2.0.3 there was undocumented dbms_sql2.expand_sql_text for
the same purpose); however, its output may differ from what we see in
trace file so I would recommend using trace files as a more reliable source.
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The transformation engine is part of the query optimizer and the
general schema of the optimizer is shown in Figure 2-1. It consists of three
main components: the transformer, estimator, and plan generator.

lParsed Query

Query Transformer

Transformed Query

Y

Estimator <

statistics Data
Dictionary

Y

Query + estimates
Y

Plan Generator

l(luery Plan

Figure 2-1. Query optimizer components

Transformations are also known as logical optimization while the plan
generator (searches through different access paths, join methods, and join
orders) is responsible for physical optimization. Please see further details
in [2], [3].

Transformations are divided into two main categories (additional
information can be found in documentation and [4]):

e Cost-based transformations - applied based on cost,
for example, or-expansion;

e Heuristic-based transformations - applied based on

heuristics, for instance, simple/complex view merging.

So cost-based transformations are applied only if the cost of the
transformed query is lower than the cost of the original query while
heuristic-based transformations are applied always when some conditions
are met (conditions differ from one transformation to another).
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Most of the transformations come into play only when CBO is enabled;
however, some of them may be applied even if RBO is used (let me remind
you that RBO is deprecated and this information is provided to shed some
light on how it works internally).

For example, the query from Listing 2-4 shows that there are two
different pieces of code for OR-expansion.

Listing 2-4. SQL feature hierarchy for OR-expansion

with sql feature as
(select lpad(' ', (level - 1) * 2) || replace(f.sql feature,
"QKSFM_", "") feature,
sys_connect by path(replace(f.sql feature,
"QKSFM_', ""), '->') feature path,
f.description
from v$sql feature f, v$sql feature hierarchy fth
where f.sql feature = fh.sql_feature
connect by fh.parent id = prior f.sql feature
start with fh.sql feature = "QKSFM_ALL")
select *
from sql_feature
where lower(replace(description, '-', ' ")) like 'or %';

FEATURE FEATURE_PATH DESCRIPTION

OR_EXPAND  ->ALL->COMPILATION->CBO->OR _EXPAND OR expansion
USE_CONCAT ->ALL->COMPILATION->TRANSFORMATION
->HEURISTIC->USE_CONCAT Or-optimization

Let’s move on to a specific example of or-expansion.
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Listing 2-5. OR-expansion

create table tr(id primary key, name) as
select rownum, lpad('#',rownum,'#') from dual connect by level
<= 1e5;

Table created.
explain plan for select * from tr where id = nvl(:p, id);
Explained.

select * from table(dbms xplan.display(format => 'basic
predicate'));

PLAN_TABLE_OUTPUT

| Id | Operation | Name

| 0 | SELECT STATEMENT | |
| 1| CONCATENATION | |
|* 2| FILTER | |
|* 3|  TABLE ACCESS FULL | TR |
|* 4| FILTER | |
| 5|  TABLE ACCESS BY INDEX ROWID| TR |
|* 6 | INDEX UNIQUE SCAN | SYS C0011913 |

2 - filter(:P IS NULL)
3 - filter("ID" IS NOT NULL)
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4 - filter(:P IS NOT NULL)
6 - access("ID"=:P)

If the value of the bind variable is null, then Oracle will do a full scan of
TR; otherwise it will do an index unique scan. Semantically, this query is
equivalent to the next one:

Listing 2-6. Manual OR-expansion

select *
from tr
where id is not null
and :p is null
union all
select *
from tr
where id = :p
and :p is not null

Listing 2-7 shows the final query after transformations:

Listing 2-7. Final query after OR-expansion

SELECT "TR"."ID" "ID","TR"."NAME" "NAME" FROM "TR" WHERE
"TR"."ID"=NVL(:B1,"TR"."ID")

As you see it’s impossible to figure out whether transformation was
applied or not based on the query text. This transformation could not have
been applied in other circumstances - for example, if there is no index on
ID or if it is not selective. If you want to force the optimizer to do (or not to
do) OR-expansion, you can use hints use_concat/no_expand.

Let’s now turn on RBO and consider an example that is a bit simpler.
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Listing 2-8. RBO and OR-expansion

explain plan for
select /*+ rule */ * from tr where id = any (:bind1, :bind2);

Explained.

select * from table(dbms xplan.display(format => 'basic
predicate'));

PLAN_TABLE OUTPUT

| Id | Operation | Name

| 0 | SELECT STATEMENT | |
| 1| CONCATENATION | |
| 2| TABLE ACCESS BY INDEX ROWID| TR |
|* 3 | INDEX UNIQUE SCAN | SYS 0011913 |
| 4| TABLE ACCESS BY INDEX ROWID| TR |
|* 5 | INDEX UNIQUE SCAN | SYS 0011913 |

3 - access("ID"=TO NUMBER(:BIND2))
5 - access("ID"=TO _NUMBER(:BIND1))
filter (LNNVL("ID"=TO NUMBER(:BIND2)))

19 rows selected.
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So in this case OR-expansion also has been triggered but this
transformation is not part of CBO, and it is implemented in a different way.
This transformation cannot be cost-based because cost is not considered
when RBO is turned on.

Let’s proceed to heuristic transformations and consider view merging.
To reproduce it in Oracle 12c, it may be necessary to disable adaptive
plans using the statement “alter session set optimizer adaptive
reporting only = true;”

Listing 2-9. View merging

explain plan for
select name, cnt
from t3
join (select id, max(name) name, count(*) cnt from tr group
by id) sub
on sub.id = t3.id;

Explained.

select * from table(dbms xplan.display(format => 'basic
predicate'));

PLAN_TABLE_OUTPUT

0 | SELECT STATEMENT |
| 1| HASH GROUP BY | |
2 | NESTED LOOPS |
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| 3] NESTED LOOPS | |
| 4 | TABLE ACCESS FULL | T3 |
|* 5 | INDEX UNIQUE SCAN | SYS 0011582 |
| 6| TABLE ACCESS BY INDEX ROWID| TR |

5 _ aCCGSS("ID"="T3"."ID")
18 rows selected.

So what happens here? Oracle scans table T3 and then uses the index
access to get correspondent rows from TR, and as a last step it applies
group by. The final query looks like the following shown in Listing 2-10:

Listing 2-10. Final query after view merging

SELECT MAX("TR"."NAME") "NAME",COUNT(*) "CNT" FROM "T3", "TR"
WHERE "TR"."ID"="T3"."ID" GROUP BY "TR"."ID","T3".ROWID

View merging transformation may be affected using hints merge/
no_merge; however if we turn off this transformation for the above query,
then another one will be applied - filter push down. To completely disable
all the transformations we can use a no_query_transformation hint. The
original and final query after transformations in this case is below in
Listing 2-11.

Listing 2-11. Original and final query with disabled transformations

select --+ no_query transformation

name, cnt
from t3
join (select id, max(name) name, count(*) cnt from tr group
by id) sub
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on sub.id = t3.id;

select "from$ subquery$ 004"."NAME 0" "NAME",
"from$ subquery$ 004"."CNT 1" "CNT"
from (select "SUB"."NAME" "NAME 0", "SUB"."CNT" "CNT 1"
from "T3",
(select "TR"."ID" "ID",

max("TR"."NAME") "NAME",
count(*) "CNT"

from "TR"

group by "TR"."ID") "SUB"

where "SUB"."ID" = "T3"."ID") "from$ subquery$ 004"

As you see, ANSI syntax was converted into Oracle native syntax even
though all the transformations are disabled. This will be more than 100
times slower than the original one with enabled transformations.

In some rare cases both cost-based and heuristic transformations may
lead to degraded performance; however it’s better to narrow down the root
case and disable specific transformations rather than all of them.

Let’s assume we have tables fact_and dim_ without referential integrity
constraints and our goal is to check whether all the IDs from the fact table
exist in the dimension table.

Listing 2-12. fact_and dim_ tables

create table fact_ as

select rownum value, rownum - 1 dim 1 id, rownum dim 2 id from
dual connect by rownum <= 1e6;

create table dim_ as

select rownum id, 'name'||rownum name from dual connect by
rownum <= 1eb;

If we check separately for each column in the fact table, then the query
is getting transformed to HASH JOIN ANTI NA and runs very fast.
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Listing 2-13. Checking existence for dimension IDs separately

select * from fact_f where dim 1_id not in (select id from dim_);
select * from fact_ f where dim 2 id not in (select id from dim );

However, if we try to check that using query from Listing 2-14, it will be
extremely slow. This query cannot be transformed to use HASH JOIN ANTI
twice - because of current implementation limitations.

Listing 2-14. Checking existence for dimension IDs. Slow version

explain plan for
select *
from fact_ f
where dim 1 id not in (select id from dim )
or dim 2 id not in (select id from dim );

Explained.

select * from table(dbms xplan.display(format => 'basic
predicate'));

PLAN _TABLE OUTPUT

SELECT STATEMENT | |
FILTER | |
TABLE ACCESS FULL| FACT |
TABLE ACCESS FULL| DIM_ |
TABLE ACCESS FULL| DIM_ |
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Predicate Information (identified by operation id):

1 - filter( NOT EXISTS (SELECT o FROM "DIM " "DIM " WHERE
LNNVL("ID"<>:B1)) OR NOT EXISTS (SELECT 0 FROM
"DIM_ " "DIM " WHERE
LNNVL("ID"<>:B2)))

3 - filter(LNNVL("ID"<>:B1))

4 - filter(LNNVL("ID"<>:B1))

20 rows selected.

If we rewrite the query manually and create an inline view, then it will

be fast again, as shown in Listing 2-15.

Listing 2-15. Checking existence for dimension IDs. Fast version

explain plan for

select *
from (select * from fact f where dim 1 id not in (select id
from dim_))

where dim 2 _id not in (select id from dim );
Explained.

select * from table(dbms xplan.display(format => 'basic
predicate'));
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PLAN _TABLE OUTPUT

| Id | Operation | Name |
| 0 | SELECT STATEMENT | |
|* 1 | HASH JOIN ANTI NA | |
|* 2 | HASH JOIN RIGHT ANTI NA| |
| 3] TABLE ACCESS FULL | DIM_ |
| 4|  TABLE ACCESS FULL | FACT |
| 5| TABLE ACCESS FULL | DIM_ |

1 - access("F"."DIM 2 ID"="ID")
2 - access("DIM 1 ID"="ID")

18 rows selected.

You may have noticed an interesting detail about the filter operation - it
has three child operations. In our case, one operation is for the fact table
and two operations are for the dimension table to check both IDs. The first
child operation for the filter is row-source, which is filtered and others are
row-sources to check filter conditions. Once first match is found for the
current row then Oracle proceeds to the next one from the main row-source.

Speaking about joins, there are only three join methods in Oracle -
MERGE JOIN, HASH JOIN, NESTED LOOPS - and all of them can operate
with only two row-sources unlike filter operation.
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The number of query transformations keeps increasing from one
release to another, and their capabilities evolve more and more as well; for
example, scalar subquery unnesting transformation that can dramatically
improve the performance of some queries was added in Oracle 11gR2.

On the other hand, it will unlikely be possible to make the transformation
engine so intelligent that we can completely avoid manual query rewriting.

Besides query transformation, there are a lot of other conversions
applied to query during the optimization phase starting from ANSI to
native translation to column projection. Important details to note:

o Transformation may impact the query plan and query
performance, but it’s not always possible to figure out
whether transformation was applied or not based on
final query text. For detailed analysis, you can start
with the “Query Transformations (QT)” section of the
optimizer trace.

o It’simportant to distinguish query optimizer
transformation and other transformations like ANSI
to native syntax translation. The latter one applies
for all queries regardless of whether query optimizer

transformations are enabled or not.

e ANSI syntax may appear in the final query if original

query has:
— fulljoin;
— left/right join partition by.

e Another very important CBO feature is automatic
generation of additional predicates, also referred as
transitive closure (Metalink Doc ID 68979.1). Simply
speaking, if we remove the second or third predicate from

a condition like “where t1.id = t2.id and t1.id = 1
and t2.id = 1” then it will be generated automatically.

80



CHAPTER 2  QUERY TRANSFORMATIONS

The next transformation to mention is column
projection. Projection is one out of five relation algebra
operations: selection, projection, union, difference,
join. Great introductional articles about relational
algebra written by Iggy Fernandez: SQL Sucks [5],
Explaining the EXPLAIN PLAN [6].

To demonstrate column projection let’s execute the
query below:

with t_as (select id, id, name from t)
select name from t_;

It returned a result without any errors because, in fact,
it’s translated to the query below (only name column
remains after projection is applied):

SELECT "T"."NAME" "NAME" FROM "T" "T"

On the other hand, Oracle does not allow us to create a
view using the factored query above because of obvious

reasons.

Like many other popular RDBMS, Oracle applies
heuristics like the following:

— do a projection “elimination of unnecessary columns from

row-source” as early as possible;

— do a selection “filtering out unnecessary rows” as early as
possible. In fact this means that the post-join predicate on the
inner table will be applied before join.

In context of CBO this means “as early as possible if
itleads to the plan with lower cost.”
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o Thefinal query in the optimizer trace is only an SQL-like
representation of what will be eventually executed
and may not be semantically equivalent to the original
query in all cases. In some cases, plans for the original
and final query may differ. Also, the final query may
not return the same result as the original query, for
example, because there is no special notation for ANTI/
SEMI joins and predicates for them are displayed
simply like equality predicates.

e Asyou see on Figure 2-1, transformations happen
before plan generation and query hints may become
unusable after transformations. For example, if inline
view has been eliminated after view merging and you
used its alias in the hint, then the hint is no longer valid.

Summary

Query transformations allow to provide significant flexibility for developers
in writing queries, and they make it possible for queries with considerably
different query texts to have eventually the same query plan and, possibly,
the same final query text. Thanks to query transformations, it’s not
necessary to care about the order of query operations. For example, if you
join two tables and calculate some aggregates, Oracle will decide what to
do first - group by or join if that is possible. Also transformations allow us
to avoid code duplication - for instance, or-expansion may expand one
query into several branches with union all, and transitive closure helps to
avoid “unnecessary” predicates.
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However, the transformation engine is not a “silver bullet” and
developers should follow best practices when writing queries to help
optimizer make the right decisions and build optimal plans. The
transformation engine will unlikely ever be so intelligent that manual
query rewriting can be completely avoided.

In additional to query transformations, the SQL engine applies a lot of
other conversions, for example, translation ANSI to native and heuristics
like column projection or column selection.
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Analytic Functions

Basic SQL provides row-level visibility, and aggregate functions allow us to
analyze data in groups so that each row corresponds to one specific group
according to group by expressions (more details about aggregate functions
provided in the next chapter, “Aggregate Functions”).

Analytic functions introduce window-level visibility. Window defines
the subset of rows used to apply a function for each input row, and its
definition is the same for all rows and is specified in the analytic clause
of the function. Analytic functions are evaluated after all operations like
joins, where, group by, having but before order by so they can appear only
in select list or in order by clause but not in where clause, for example. The
number of rows in a recordset remains the same after the analytic function
is applied, unlike the number of rows after aggregate function is applied
where each group is represented by one row in a result set.

It’s easier to explain how it works based on an example, as shown in
Listing 3-1.

Listing 3-1. Analytic functions

with t as
(select rownum id, trunc(rownum / 4) part from dual connect by
rownum <= 6)
select t.*,
sum(id) over(partition by part order by id) sumi,
sum(id) over(partition by part) sum2
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from t
order by id;

ID PART SUM1 SUM2
1 0 1 6
2 0 3 6
3 0 6 6
4 1 4 15
5 1 9 15
6 1 15 15

6 rows selected.

“partition by part” means that we apply an analytic function for each
partindependently. If it’s omitted, then the whole recordset is treated as
one partition. Without an “order by” clause, window for each row covers
all the rows for the current partition so the result is the same for all rows.
With an “order by” clause, window for each row covers all rows from the
beginning of the partition to the current row. This can be adjusted by
specifying a windowing clause after “order by” while the default behavior is
“range between unbounded preceding and current row” (or simply “range
unbounded preceding”) when “order by” is specified; otherwise it’s “range
between unbounded preceding and unbounded following.”

Partition by clause is not mandatory as well as a windowing clause may
not be specified after an order by; however, for some functions “order by”
must be always provided - for example, in case of row_number or rank.

The logic that can be implemented using analytic functions and single
table access would otherwise require additional joins or subqueries.
Listing 3-2 shows how logic from Listing 3-1 can be implemented without
analytic functions.
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Listing 3-2. Rewriting query without analytic functions

with t as
(select rownum id, trunc(rownum / 4) part from dual connect by
rownum <= 6)
select t.*,
(select sum(id) from t t0 where to.part
t0.id <= t.id) sumi,
(select sum(id) from t tO where t0.part
from t

t.part and

t.part) sum2

order by id;

ID PART SuM1 SUM2
1 0] 1
2 0 3
3 0 6
4 1 4 15
5 1 9 15
6 1 15 15

6 rows selected.

Back to query transformations, Oracle cannot rewrite this query to use
analytic functions and avoid unnecessary joins and table scans. Such an
intelligence unlikely will be added in the near future.

Analytic functions can help to avoid joins even if different columns are
used in a join condition. In Listing 3-3, the same value is calculated using a
correlated scalar subquery and analytic functions.
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Listing 3-3. Avoiding joins by using analytic functions
exec dbms_random.seed(99);

create table ta as
select rownum id,
trunc(dbms_random.value(1, 5 + 1)) x1,
trunc(dbms_random.value(1, 5 + 1)) x2,
trunc(dbms_random.value(1, 5 + 1)) x3
from dual
connect by level <= 10;
select (select sum(x3) from ta t0 where t0.x2 = ta.x1) s,
case
when x1 > x2 then
sum(x3) over(order by x2 range between greatest
(x1 - x2, 0)
following and greatest(x1l - x2, 0) following)
else
sum(x3) over(order by x2 range between greatest
(x2 - x1, 0)
preceding and greatest(x2 - x1, 0) preceding)
end sa,
ta.*
from ta
order by id;

S SA ID X1 X2 X3
4 4 1 3 1 2
10 10 2 1 5 4
1 3 2 5 1
9 9 4 5 3 4
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4 4 5 3 1 1
6 4 5 1
7 4 5 3
8 3 1 5
9 9 9 5 2 1
9 9 10 5 1 2

10 rows selected.

In order to calculate a sum of x3 for rows where x2 equals to x1, we use
a window with a range shift that equals the difference between x1 and x2.
Depending on whether x1 is greater or less than x2, we consider the
following or preceding rows. For each row we are interested only in one
sum, but Oracle needs to calculate both for all rows, so to avoid an exception
when x1-x2 or x2-x1 is negative we apply the greatest function.

In addition to a logical offset by range, a window may be specified
with a physical offset by rows. To highlight the difference let’s consider
the following task. There is a table containing information about cash
withdrawals from an ATM and we need to calculate for each withdrawal
the following:

o For how many transactions the amount was not less
than 50 considering the current transaction and the 5
preceding transactions - 6 withdrawals in total (cnt1);

e For how many transactions the amount was not less
than 50 considering the range between the current
transaction and 5 preceding minutes (cnt2).

Listing 3-4. Implementing logic using windowing clause
exec dbms_random.seed(11);

create table atm as
select trunc(sysdate) + (2 * rownum - 1) / (24 * 60) ts,
trunc(dbms_random.value(1, 20 + 1)) * 5 amount
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from dual
connect by level <= 15;
select to _char(ts, 'mi') minute,
amount,
count(nullif(sign(amount - 50), -1))
over(order by ts rows 5 preceding) cnti,
count(nullif(sign(amount - 50), -1))
over(order by ts range interval '5' minute preceding) cnt2
from atm;

MI AMOUNT CNT21 CNT2
01 85 1 1
03 15 1 1
05 100 2 2
07 40 2 1
09 30 2 1
11 50 3 1
13 85 3 2
15 60 4 3
17 5 3 2
19 100 4 2
21 25 4 1
23 30 3 1
25 80 3 1
27 5 2 1
29 35 2 1

15 rows selected.

A bit simpler example to highlight the difference between offset by
range and by rows is in Listing 3-5.
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Listing 3-5. Difference between a logical offset and a physical offset

with t as
(select rownum id, column value value from table(numbers
(1,2,3,4.5,4.6,7,10)))
select t.*,
last_value(value)
over (order by value range between unbounded preceding
and 1 preceding) 11,
last_value(value)
over (order by value rows between unbounded preceding
and 1 preceding) 12

from t;

ID VALUE L1 L2
1 1

2 2 1 1
3 3 2 2
4 4.5 3 3
5 4.6 3 4.5
6 7 4.6 4.6
7 10 7 7

7 rows selected.

L1 and L2 differ for id = 5 because the upper bound for the last_value
in the first case is 3.6 (4.6 - 1) while in the second case it’s simply the value
from the previous row - 4.5.

A windowing clause doesn’t make sense for some analytic functions so
it cannot be specified for lag/lead, for example.
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Despite all the flexibility, analytic functions have some limitations:

1) Only the unbounded preceding, current row,
unbounded following boundaries are allowed
when sorting by multiple columns. For example,
if we have a table containing information about
points (coordinates x and y), then it’s not possible to
calculate for each row how many points exist within
a given shift by x and y from the current point.

2) Attributes from the current row cannot be referred
to in a function. For example, if we want to sum
the distances from the current point to all other
points, then it’s not doable using analytic functions.
However, if the goal is to sum the distances to some
specific point, then it can be easily done for different
ranges of rows.

The specifics with brief comments inline are below.

Listing 3-6. Limitations of analytic functions

with points as
(select rownum id, rownum * rownum x, mod(rownum, 3) y
from dual
connect by rownum <= 6)
, t as
(select p.*,
-- the number of points within the distance of 5 by x
coordinate
-- cannot be solved with analytic functions for more
than one coordinate
count(*) over(order by x range between 5 preceding and 5
following) cnt,
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-- sum of the distances to the point (3, 3) for all rows
-- between unbounded preceding and current row ordered by id
-- cannot be solved using analytic functions if required
to calculate
-- distance between other rows and current row rather
than a constant point
round(sum(sqrt((x - 3) * (x - 3) + (y - 3) * (y - 3)))
over(order by id),
2) dist
from points p)
select t.*,
(select count(*)
from t t0 where t0.x between t.x-5 and t.x + 5) cnt1,
(select count(*)
from t t0 where t0.x between t.x-5 and t.x + 5 and to.y
between t.y-1 and t.y + 1) cnt2,
(select round(sum(sqrt((x - 3) * (x - 3) + (y - 3) * (y - 3))), 2)
from t t0 where t0.id <= t.id) dist1,
(select round(sum(sqrt((x - t.x) * (x - t.x) + (y - t.y) *
(y - t'y))): 2)
from t t0 where t0.id <= t.id) dist2
from t
order by id;

ID X Y CNT DIST CNT1 CNT2 DIST1 DIST2

1 1 1 2 2.83 2 2 2.83 0
2 4 2 3 4.24 3 2 4.24 3.16
3 9 0 2 10.95 2 1 10.95 13.45
4 16 1 1 24.1 1 1 24.1 34.11
5 25 2 1 46.13 1 1 46.13 70.2
6 36 0 1 79.26 1 1 79.26  125.28

6 rows selected.
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So values cnt2 and dist2 cannot be calculated using analytic functions.

Also it’s worth mentioning that if a type of the sort key does not support
arithmetic operations then the logical offset (range) cannot be used.
Obviously, there is no such limitation for physical offset (rows).

Most analytic functions can also act as aggregate functions (if “over”
is not specified); however some of them are purely analytic, for example,
row_number or rank. As was mentioned previously, “order by” is
mandatory for such functions.

A special case of an analytic function is listagg. First, it’s not
commutative, which means that concatenation of the first and second
values is not the same as concatenation of the second and first, unlike sum
or average, for example. Second, “order by” cannot be specified in analytic
clause. Third, it’'s not possible to use distinct keyword in a function. Some
differences between listagg and UDF stragg (source code available on
AskTom) are shown in Listing 3-7.

Listing 3-7. Differences between listagg and stragg

with t as
(select rownum id, column_value value
from table(sys.odcinumberlist(2, 1, 1, 3, 1))),
to as
(select t.*, row number() over(partition by value order by id)
rn from t)
select t1.*,
(select listagg(value, ',') within group(order by value)
from t t_in
where t_in.id <= t1.id) cumul_ord
from (select to.*,
listagg(value, ',") within group(order by value)
over() list ord,
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listagg(decode(rn, 1, value), ',') within
group(order by value) over() dist ord,
stragg(value) over(order by id) cumul,
stragg(distinct value) over() dist,
stragg(decode(rn, 1, value)) over(order by id)
cumul dist
from to) t1
order by id;

ID VALUE RN LIST ORD DIST ORD CUMUL DIST  CUMUL _DIST CUMUL ORD

1 2 1 1,1,1,2,3 1,2,3 2 1,2,3 2 2
2 1 1 1,1,1,2,3 1,2,3 2,1 1,2,3 2,1 1,2

3 1 2 1,1,1,2,3 1,2,3 2,1,1 1,2,3 2,1 1,1,2

4 3 1 1,1,1,2,3 1,2,3 2,1,1,3 1,2,3 2,1,3 1,1,2,3

5 1 3 1,1,1,2,3 1,2,3 2,1,1,3,1 1,2,3 2,1,3 1,1,1,2,3

In short, it’s not possible to get cumulative concatenation with window
ordering for listagg. On the other hand, window ordering can be specified
for stragg, but in this case it’s not possible to specify a concatenation order
for result.

So if the goal is to concatenate values with window ordering and
specify the order of the result itself, then it cannot be achieved using
analytic functions and a single table scan. In the above example it was
calculated using scalar subquery.

The important point is that analytic functions is not a panacea.
Sometimes it may be more efficient to use joins instead. Let’s consider
the following case. Data batches identified by batch_id are written into
a stream table with an index on batch_id. Our goal is to calculate the
sum(value) for the last batch_id. See Listing 3-8.
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Listing 3-8. Different approaches: analytic functions vs joins

create table stream as
select batch_id, value
from (select rownum value from dual connect by rownum <=
10000) x1,
(select rownum batch id from dual connect by level <= 1000)
order by 1, 2;

create index stream batch id idx on stream(batch id);

exec dbms_stats.gather table stats(user, 'stream');
alter session set statistics level = all;

select sum(s.value)

from stream s
where batch id = (select max(s0.batch id) from stream s0);
select * from table(dbms xplan.display cursor(null,null,
'TOSTATS LAST'));

select sum(value)
from (select s.*, dense rank() over(order by batch id) drnk
from stream s)
where drnk = 1;
select * from table(dbms xplan.display cursor(null,null,
'TOSTATS LAST'));

Execution plans are shown in Listing 3-9 (columns Name and Starts
have been cut out for formatting purposes). So the version with a scalar
subquery a in where clause (which requires additional join) is 35 times
faster than a version with analytic functions - 0.09 vs 3.48 seconds. Most of
the time for the analytic query was spent on the ordering - 3.47 - 1.40 = 2.07
seconds not to mention that number of logical reads increased by more
than 400 times.
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In some cases, a sort operation caused by analytic queries may be
so inefficient that approaches with additional joins would have better
performance even without any indexes. Even though such cases are quite
rare, it always makes sense to consider different ways to get the desired
result set.

Differences and Interchangeability
of Functions

This section is not dedicated to describing differences between row_
number and rank or, let’s say, between rank and dense_rank. Instead of
that, we will consider how different functions can be used to implement
the same logic, taking into account specifics of the functions and
windowing clause.

Sometimes you may come across code demonstrated in Listing 3-10.

Listing 3-10. Order by with unbounded range

max(version) over (partition by dt order by version
rows between unbounded preceding and unbounded following)
latest version

In this case it does not make any sense to specify the order because the
window for each row is the whole partition so Listing 3-11 shows logically
identical expression.

Listing 3-11. Max value by partition

max(version) over (partition by dt) latest version

However, sometimes it makes sense to specify order even if the
window is the whole partition.
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Let’s consider the following task: for each row we need to derive a max
value corresponding to a max date. This is implemented in expressions for
m2 and m3 below.

Listing 3-12. Max value for max date

with t(id, value, dt, part) as
(
select 1, 10, date '2015-07-01', 1 from dual
union all select 2, 3, date '2015-08-01', 1 from dual
union all select 3, 2, date '2015-09-01', 1 from dual
union all select 4, 0, date '2016-11-01', 1 from dual
union all select 5, 5, date '2016-11-01', 1 from dual
union all select 6, 9, date '2017-01-01', 1 from dual
union all select 7, 4, date '2017-01-01', 1 from dual
)
select
Tk,
max(value) over (partition by part) mi,
max(value) keep (dense rank last order by dt) over (partition
by part) m2,
last_value(value)
over (partition by part order by dt, value
rows between unbounded preceding and unbounded following) m3,
max(value)
over (partition by part order by dt, value
rows between unbounded preceding and unbounded following) m4
from t
order by id;
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ID VALUE DT PART M1 M2 M3 M4
1 10 01.07.15 1 10 9 9 10
2 3 01.08.15 1 10 9 9 10
3 2 01.09.15 1 10 9 9 10
4 0 01.11.16 1 10 9 9 10
5 5 01.11.16 1 10 9 9 10
6 9 01.01.17 1 10 9 9 10
7 4 01.01.17 1 10 9 9 10

7 rows selected.

So the max date is 01.01.2017 and it has two corresponding values - 4
and 9. The result can be calculated as “max(value)” with “last” function
specified after the keyword keep and ordering by dt or by using the
“last_value” function and ordering by dt and value.

If we need to get the min value then we can use min function instead
of max or simply specify descending order for the value in last_value
function.

Listing 3-13. Min value for max date

min(value) keep (dense rank last order by dt) over (partition
by part) m2,
last value(value)
over (partition by part order by dt, value desc

rows between unbounded preceding and unbounded following) m3
from t

So in the first case we used another function while in the second one
only the ordering direction by value has changed.

The last example highlights specifics of the “last_value” function and
construction “ignore nulls.” It was impossible to specify “ignore nulls”
before 10g but the workaround is quite straightforward.
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Listing 3-14. Last_value + ignore nulls and workaround for old versions

with t(id, value, part) as

(

select 1, null, 1 from dual

union all select 2, 'one', 1 from dual

union all select 3, null, 1 from dual

union all select 1, 'two', 2 from dual

union all select 2, null, 2 from dual

union all select 3, null, 2 from dual

union all select 4, 'three', 2 from dual

)

select t.*, max(value) over(partition by part, cnt) 1lvo

from (select t.*,
last value(value ignore nulls) over(partition by
part order by id) lv,
count(value) over(partition by part order by id) cnt
from t

order by part, id) t;

ID VALUE PART LV CNT LVO

1 1 0

2 one 1 one 1 one

3 1 one 1 one

1 two 2 two 1 two

2 2 two 1 two

3 2 two 1 two
4 three 2 three 2 three

7 rows selected.

101



CHAPTER 3  ANALYTIC FUNCTIONS

We used count in the inline view to build partitions containing the
current value and all subsequent rows with blank values and max function
on top of that to mimic behavior of the last_value + ignore nulls. So
apparently functions with completely different purposes can be used to
implement the same logic.

Summary

Analytic functions are very powerful tool that can be used to get the result
that otherwise would require self joins or subqueries. They have been
introduced in Oracle 8i and has significantly evolved since then; however,
their capabilities continue developing in many versions including Oracle 12c.
Oracle provides a flexible definition of the windowing clause to adjust the
default definition of the analytic window, and such a feature has its own
limitations but for most of the practical tasks, built-in flexibility is more
than enough.
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Aggregate Functions

Aggregate functions return one row for each group defined in a group by
clause. Both column names and expressions can be used to define groups,
and one group is a set of rows with the same values for all expressions
specified in “group by.” Each row belongs to one and only one group. If “group
by” is not specified, then the entire recordset is a single group, and in this case
query always returns one row even if the recordset to be grouped is empty.

Listing 4-1 shows how to calculate the total amount of presentations
and count of working days for all authors based on tables introduced in
Listing 1-58 in Chapter 1.

Listing 4-1. Aggregate functions. Simple example

select p.name,
count(*) cnt_all,
count(distinct p.day) cnt day,
listagg(p.day || " ' || p.time || ":00', '; ') within
group(order by w.id) details

from presentation p, week w
where p.day = w.day
group by p.name;

NAME CNT_ALL CNT_DAY DETAILS

John 3 2 monday 14:00; monday 9:00; friday 9:00
Rex 2 2 wednesday 11:00; friday 11:00
© Alex Reprintsev 2018 103
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Only distinct values are passed to an aggregate function when a
distinct keyword is specified. Listagg function was used to display
details for all presentations, as this was pointed out in the previous
chapter - listagg is not commutative and order must be specified after
“within group” keywords. There are some other aggregate functions whose
result depends on the order within a group, for instance - percentile_cont
(see quiz “Percentile with Shift” in Part II for a more complicated example).

Most of the aggregate functions return a result of the atomic type,
which is the same as a type of argument - for example, number, date,
varchar2, etc. However, some functions just combine values together
instead of calculating a result value based on input - for example, collect
and xmlagg.

UDFs can be applied on top of the collect function to process elements
for each group. The collagg function below may be used to concatenate
collection elements.

Listing 4-2. Concatenating collection elements

create or replace function collagg(p in strings) return varchar is
result varchar2(4000);

begin
for i in 1 .. p.count loop
result := result || ', ' || p(i);
end loop;

return(substr(result, 3));
end collagg;
/
Where strings is a collection defined as

create or replace type strings as table of varchar2(4000)
/
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Listing 4-3 shows how to get a list of all days with presentations per
presenter as well as a list of distinct days.

Listing 4-3. Using collect function

select name,
collagg(cast(collect(p.day order by w.id desc) as
strings)) days,
collagg(set(cast(collect(p.day order by w.id desc) as
strings))) days unique

from presentation p, week w
where p.day = w.day
group by p.name;

NAME DAYS DAYS_ UNIQUE
John friday, monday, monday friday, monday
Rex friday, wednesday friday, wednesday

Unlike listagg, order by is specified in the function itself, and distinct
keyword is not allowed in collect but the set function can be used to
eliminate duplicates. Even though set function seems to preserve the order
of elements - there is no guarantee that it’s true in all cases.

Similar logic including ordering can be implemented using xmlagg
as shown in the expression below, but elimination of duplicates is not
possible in this case without an additional inline view.

substr(xmlagg(xmlelement("x", ', ' || p.day) order by w.id
desc)

.extract('//x/text()")

.getstringval(), 3) x
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In addition to built-in aggregate functions, Oracle (since version 9i
Release 1) provides an interface for user-defined aggregates (UDAG)
that can be leveraged to implement any complex logic for grouping. For
example, there is a single-row function bitand which does not have an
aggregate analog. If necessary this logic can be implemented using UDF +
collect or UDAG.

In a previous chapter it was shown how analytic functions may help to
avoid joins, and aggregate functions can also be used for this purpose.

For example, a requirements table contains information about
positions and corresponding skills. The goal is to get positions that require
Oracle knowledge without Linux.

create table requirements(position, skill) as

(

select 'Data Scientist', 'R' from dual

union all select 'Data Scientist', 'Python' from dual

union all select 'Data Scientist', 'Spark' from dual

union all select 'DB Developer', 'Oracle' from dual

union all select 'DB Developer', 'Linux' from dual

union all select 'BI Developer', 'Oracle’ from dual

union all select 'BI Developer', 'MSSQL' from dual

union all select 'BI Developer', 'Analysis Services' from dual

union all select 'System Administrator', 'Linux' from dual

union all select 'System Administrator', 'Network Protocols'
from dual

union all select 'System Administrator', 'Python' from dual

union all select 'System Administrator', 'Perl' from dual

)5
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A straightforward solution is shown below.

select position
from requirements r
where skill = 'Oracle’
and not exists (select null
from requirements r0
where r0.position = r.position
and r0.skill = 'Linux');

POSITION

BI Developer

The main disadvantage of this solution is a correlated subquery in a
where clause that causes an additional scan of the requirements table.

An alternative approach would be to calculate counts for Oracle and
Linux skills and filter out those that do not satisfy.

select position
from requirements

group by position

having count(decode(skill, 'Oracle', 1)) =1
and count(decode(skill, 'Linux', 1)) = 0;

POSITION

BI Developer

This solution is more preferable from a performance point of view,
and you may notice that aggregate functions are used only for filtering
purposes and not in a select list.

Let’s consider a more generic example. A tables entity and property are
used to implement an entity-attribute-value (EAV) model - this approach
is used in database design to store entities with variable number of
attributes in a single table.
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Listing 4-4. EAV model

with entity(id, name) as

(select 1, 'E1' from dual

union all select 2, 'E2' from dual

union all select 3, "E3' from dual),
property(id, entity id, name, value) as
(select 1, 1, 'P1', 1 from dual

union all select 2, 1, 'P2', 10 from dual
union all select 3, 1, 'P3', 20 from dual
union all select 4, 1, 'P4', 50 from dual
union all select 5, 2, 'P1', 1 from dual
union all select 6, 2, 'P3', 100 from dual
union all select 7, 2, 'P4', 50 from dual
union all select 8, 3, 'P1', 1 from dual
union all select 19, 3, 'P2', 10 from dual
union all select 10, 3, 'P3', 100 from dual)

Our goal is to select entities with values for attributes P1, P2, P3 equal
to 1, 10, 100 correspondingly, and properties are supposed to be unique
for each entity. Sometimes developers use multiple joins to achieve this,
which is very inefficient - in fact, the number of joins equals to the number
of attributes we are interested in.

select e.name
from entity e

join property p1 on pl.entity id = e.id and pil.name = 'P1'
join property p2 on p2.entity id = e.id and p2.name = 'P2'
join property p3 on p3.entity id = e.id and p3.name = 'P3'

where pil.value = 1 and p2.value = 10 and p3.value = 100;

NAME
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If we required getting values for 20 attributes, this would cause 20
joins, which is not a viable solution at all.

Taking into account that for each property there may be either one
value or no values at all, we can flatten properties for each entity in one
row and apply a filter on top of that.

Listing 4-5. Flattening EAV model using group by

select name
from (select e.name,
max(decode(p.name, 'P1', value)) p1 value,
max(decode(p.name, 'P2', value)) p2 value,
max(decode(p.name, 'P3', value)) p3_value
from entity e
join property p
on p.entity id = e.id
group by e.name)
where (p1 value, p2 value, p3 value) in ((1, 10, 100));

Finally, flattening is not really necessary so we can simply calculate the
number of properties with specified values.

select e.name
from property p
join entity e on p.entity id = e.id
where (p.name, p.value) in (('P1', 1), ('P2', 10), ('P3', 100))
group by e.name
having count(*) = 3;
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Pivot and Unpivot Operators

Listing 4-5 demonstrates flattening logic implemented using group by;
however starting with Oracle 11g, the same can be achieved using a pivot
operator.

Listing 4-6. Flattening EAV model using pivot operator

create table entity flattened as
select *
from (select e.name name, p.name p name, value
from entity e
join property p
on p.entity id = e.id)

pivot(max(value) for p _name in('P1' p1 value, 'P2' p2 value,
'P3" p3_value));

Table entity_flattened contains a recordset identical to the one in the
inline view with group by. One of the most important points regarding the
pivot operator is that all columns must be listed in a query because Oracle
defines all the columns of a result set during the parsing phase. Saying that,
it’s not possible to dynamically create columns in a recordset based on data
in a table or other conditions, so if you have such a requirement, then you
can use ODCltable interface (or polymorphic table functions starting with
Oracle 18c). Pivot XML allows you to generate XMLs for a dynamic number
of columns, but if you want to get a result in a relational form you need to list
all of them for XML parsing. This technique is demonstrated in Listing 4-7.

Listing 4-7. Parsing pivot XML

select name, x.*
from (select *
from (select e.name name, p.name p _name, value
from entity e
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join property p
on p.entity id = e.id)
pivot xml(max(value) value for p name in(any))),
xmltable('/PivotSet' passing p_name_xml

columns
namel varchar2(30)
path '/PivotSet/item[1]/column[@name="P_NAME"]/
text()',
valuel varchar2(30)
path '/PivotSet/item[1]/column[@name="VALUE"]/
text()',
name2 varchar2(30)
path '/PivotSet/item[2]/column[@name="P_NAME"]/
text()',
value2 varchar2(30)
path '/PivotSet/item[2]/column[@name="VALUE"]/
text()',
name3 varchar2(30)
path '/PivotSet/item[3]/column[@name="P_NAME"]/
text()',
value3 varchar2(30)
path '/PivotSet/item[3]/column[@name="VALUE"]/
text()') x;

NAME NAME1 VALUE1 NAME2 VALUE2 NAME3 VALUE3

E1 P1 P2 10 P3 20
E2 P1 1 P3 100 P4 50
E3 P1 1 P2 10 P3 100

Given that this logic relates to presenting a result, sometimes it makes
sense to implement it on the client side.
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The reverse operation can be done using the unpivot operator as
shown in Listing 4-8.

Listing 4-8. Unpivot operator

select *
from entity flattened
unpivot (value for p_name in
(p1_value as 'P1', p2 value as 'P2', p3 value as 'P3"));

NAME P_NAME VALUE
E1 P1 1
E1 P2 10
El P3 20
E3 P1 1
E3 P2 10
E3 P3 100
E2 P1 1
E2 P3 100

8 rows selected.

It creates new rows for each column listed in unpivot clause and
replicates values for all remaining columns. In the example above it’s
“p1_value, p2_value, p3_value” and name correspondingly. There is no
need for “any” keyword for unpivot because the recordset to be unpivoted
always contains fixed and predefined number of columns. Oracle could
have introduced syntactic sugar like “unpivot (value for p_name in
(any except name))” but there is no strong necessity for this.
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Unpivot can be implemented using Cartesian jon.

select name,
p_name,
decode(p_name, 'P1', p1 value, 'P2', p2 value, 'P3',
p3_value) value
from entity flattened,
(select 'P1' p name from dual
union all select 'P2" from dual
union all select 'P3' from dual)
where decode(p _name, 'P1', p1 value, 'P2', p2 value, 'P3',
p3_value) is not null
order by 1, 2;

Cube, Rollup, Grouping Sets

Oracle provides additional capabilities for calculating totals and subtotals.
Let’s consider a table with information about orders.

create table orders(order id, client id, product id, quantity) as

(

select 1, 1, 1, 1 from dual

union all select 1, 1, 2, 2 from dual
union all select 1, 1, 3, 1 from dual
union all select 2, 2, 1, 1 from dual
union all select 2, 2, 5, 1 from dual
union all select 3, 1, 1, 1 from dual
union all select 3, 1, 4, 1 from dual
union all select 3, 1, 4, 1 from dual
union all select 4, 2, 4, 1 from dual
union all select 4, 2, 5, 1 from dual

)5
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“Rollup” allows us to calculate subtotals from right to left and “cube”
allows us to calculate all possible subtotals for listed columns.

select client id, product id, sum(quantity) cnt
from orders

group by rollup(client id, product id)

order by client_id, product_id;

CLIENT_ID PRODUCT_ID CNT
1 1 2
1 2 2
1 3 1
1 4 2
1 7
2 1 1
2 4 1
2 5 2
2 4

11

10 rows selected.

select client id, product id, sum(quantity) cnt
from orders

group by cube(client id, product id)

order by client id, product id;

CLIENT_ID PRODUCT_ID CNT
1 1 2
1 2 2
1 3 1
1 4 2
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1 7
2 1 1
2 4 1
2 2
2 4
1 3

2 2

3 1

4 3

5 2

11

15 rows selected.
The same can be done using respectively.
grouping sets ((), (client_id), (client_id, product id))
and
grouping sets ((), (client id), (product id), (client id, product _id))

Functions grouping and grouping_id can be used to identify
subtotals. Grouping accepts only a single expression as a parameter while
grouping_id can accept multiple expressions.

select decode(grouping(client id), 1, 'all clients', client id)
as client_id,
decode(grouping(product _id), 1, 'all products', product id)
as product_id,
sum(quantity) cnt,
decode(grouping id(client_id, product_id),
bitand(grouping id(client id, product id), bin_
to_num(0, 0)),
‘client, product',
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bitand(grouping id(client_id, product id),
bin to num(o, 1)),
‘client’',
bitand(grouping id(client id, product id),
bin to num(1, 1)),
‘grand total') slice

from orders

group by rollup(client id, product id)

order by client id, product id;

CLIENT_ID PRODUCT _ID CNT SLICE

1 1 2 client, product
1 2 2 client, product
1 3 1 client, product
1 4 2 client, product
1 all products 7 client

2 1 1 client, product
2 4 1 client, product
2 5 2 client, product
2 all products 4 client

all clients all products 11 grand total

10 rows selected.

There is also a function group_id that can be used to distinguish the
same slices.

select decode(grouping(client id), 1, 'all clients', client id)
as client id,
decode(grouping(product id), 1, 'all products', product id)
as product_id,
sum(quantity) cnt,
group id() group id
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group by grouping sets(client_id, product_id,(),())

order by client id, product id;

CLIENT_ID

PRODUCT _ID

CNT

GROUP_ID

all clients
all clients
all clients
all clients
all clients
all clients
all clients

all products
all products

1
2
3
4
5

all products
all products

9 rows selected.

Without these capabilities, the same result can be achieved using
multiple table scans and groupings for each grouping set. On the other

, O O O O O O O ©

hand, it’s doable using a single table scan and Cartesian join with slices, but

performance of built-in functionality will be better because it’s optimized to

calculate aggregates by different attributes for the same recordset.

select client id, product id, sum(quantity) cnt, slice

from (select decode(instr(slice, 'client'), o0,

'all clients', client id) as client id,

decode(instr(slice, 'product'), o,
'all products', product id) as product_id,

quantity,
slice

from orders,

(select 'client, product' slice from dual

union all select 'client' from dual
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union all select 'grand total' from dual))
group by client_id, product_id, slice
order by client id, product id;

So pivot can be rewritten with group by, unpivot can be imitated with
a Cartesian product, and group by cube/rollup/grouping sets can be
replaced with a Cartesian product and simple group by. However, built-in
capabilities not only make queries more concise and easier to understand
but have noticeably better performance.

The last thing to mention in this chapter is that aggregate functions can
be nested or mixed up with analytic functions, which is explained in more
detail in Chapter 9, “Logical Execution Order of Query Clauses.”

Summary

Aggregate functions allow us to calculate a single result row for each group.
In addition to various built-in aggregates, developers can implement their
own UDAG (which also can be used as analytic functions with “over”
clause) or use the collect function to aggregate rows into collection and
apply any logic on top of it using UDE. Most of the built-in aggregates are
commutative so order of rows within a group does not matter; however,
some of them, like listagg or percentile_cont, require order that is specified
after “within group” keywords. Order also matters for collect or xmlagg
functions and may be specified in a function itself.

In a similar manner as it was shown for analytic functions, Oracle
allows us to access first (or last) values from the group according to a
specified order using the keyword keep and functions first/last. This is very
helpful when it’s required to find a min or max value from the group and
corresponding attributes.

Sometimes grouping may help to avoid additional joins; however, such
cases are quite rare. Also grouping can be used instead of pivot to “flatten”
data, but using built-in capabilities are more preferable.
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CHAPTER 5

Hierarchical Queries:
Connect by

The connect by clause is used to query hierarchies if they are stored as
parent-child relationships, also known as an adjacency lists model. Simply
speaking, this model means that a parent - child pair is stored for each
child. In general adjacency lists can represent directed graphs, not only
hierarchical trees; in this case the list describes the set of neighbors of a
vertex in the graph. So an adjacency list model is much wider and a parent-
child model is one of its implementations.

Listing 5-1 shows the query for building hierarchy based on a parent-
child relationship and using Oracle hierarchical query pseudocolumns.

Listing 5-1. Querying parent-child relationship

create table tree as

select 2 id, 1 id parent from dual

union all select 3 id, 1 id parent from dual
union all select 4 id, 3 id parent from dual
union all select 5 id, 4 id parent from dual
union all select 11 id, 10 id_parent from dual
union all select 12 id, 11 id_parent from dual
union all select 13 id, 11 id parent from dual;
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select connect_by root id parent root,
level 1vl,
rpad(' ', (level - 1) * 3, " ') || t.id as id,
prior id_parent grand parent,
sys_connect_by path(id, '->') path,
connect by isleaf is leaf
from tree t
start with t.id parent in (1, 10)
connect by prior t.id = t.id parent;

ROOT LVL ID GRAND_PARENT PATH IS LEAF
1 ->2 1
1 ->3 0
1 2 4 1 ->3->4 0
1 5 3 ->3->4->5 1
10 111 ->11 0
10 2 12 10 ->11->12 1
10 2 13 10 ->11->13 1

The following must be specified for building a hierarchy:

¢ Root - in the example we build two trees with root
parent IDs equal 1 and 10;

o Relationship between parents and children. «prior»
is a unary operator that returns a value of a given
expression (which is column as a rule) for an
immediate parent for the current row.

Other hierarchical queries features demonstrated in Listing 5-1:

e connect_by_root - unary operator that returns an
expression value for the root row.
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e level and connect_by_isleaf - pseudocolumns, which
return level (hierarchical depth) and flag whether a
node is leaf or not for each row.

e sys_connect_by_path - function that returns path from
root to node with given separator.

prior operator can be used not just in “connect by” clause but in a select
list as well, but it can be applied to a given expression only once. For example,
ifthe goal is to select a parent id two levels up, then the prior can be applied to
the id_parent column - see expression for grand_parent in Listing 5-1.

Connect by traverses a hierarchy using a depth-first search approach, so
all descendants for the current node are processed before the next node on
the same level. “Order siblings by” can be used to specify the order within
the same level. In this case, Oracle also will use a depth-first search but the
order of the children for the parent may change. Listing 5-2 shows the result
after specifying «order siblings by t.id desc» in the previous query.
There is no guarantee that first level nodes will be ordered as specified in
“order siblings by” because we cannot say they have a common parent.

Listing 5-2. Ordering siblings

ROOT LVL ID ----GRAND_PARENT PATH IS LEAF
10 111 ->11 0
10 2 13 10 ->11->13 1
10 2 12 10 ->11->12 1

1 13 ->3 0
1 2 4 1 ->3->4 0
1 3 5 3 ->3->4->5 1
1 12 ->2 1

If connect by is specified in the same query block as joins, then Oracle
processes hierarchical queries as follows: joins (including those specified
in where clause), connect by, all remaining where clause predicates.
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Let’s create the following tables for a demonstration:

drop table tree;

drop table nodes;

create table tree(id, id parent) as

select rownum, rownum - 1 from dual connect by level <= 4;

create table nodes(id, name, sign) as

select rownum, 'name' || rownum, decode(rownum, 3, 0, 1)
from dual connect by rownum <= 4;

In the second and third queries from Listing 5-3, the filter by sign was
applied before building the hierarchy while in the first query it was applied
after the hierarchy was built.

Listing 5-3. Connect by and joins

select t.*, n.name
from tree t, nodes n
where t.id = n.id
and n.sign = 1
start with t.id parent = 0
connect by prior t.id = t.id parent;

ID ID _PARENT NAME

1 0 namel
1 name2
4 3 name4

select *
from (select t.*, n.name
from tree t, nodes n
where t.id = n.id
and n.sign = 1) t
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start with t.id parent = 0
connect by prior t.id = t.id parent;

ID ID_PARENT NAME

select t.*, n.name
from tree t
join nodes n
on t.id = n.id
and n.sign = 1
start with t.id parent = 0
connect by prior t.id = t.id_parent;

ID 1ID_PARENT NAME
1 0 namel
1 name2

The final query after transformations for the original query with an
ANSI join contains a Cartesian join while join predicate moved to the
“start with” and “connect by” clauses. However, more logically it would
be to expect an inline view and connect by on to top it in the transformed
query. So if you build a plan for a transformed query, it will differ from the
original plan for an original query and the join type will be “MERGE JOIN
CARTESIAN!

select "T"."ID" "ID", "T"."ID_PARENT" "ID_PARENT", "N"."NAME"
"NAME"
from "TREE" "T", "NODES" "N"
start with "T"."ID_PARENT" = 0
and "T"."ID" = "N"."ID"
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and "N"."SIGN" = 1

connect by "T"."ID PARENT" = prior "T"."ID"
and "T"."ID" = "N"."ID"
and "N"."SIGN" =1

The transformed query for the first query from Listing 5-3 also looks
a bit unexpected - as you see the join condition moved from the where
clause to “start with” and “connect by.

select "T"."ID" "ID", "T"."ID PARENT" "ID PARENT", "N"."NAME"
"NAME"
from "TREE" "T", "NODES" "N"
where "N"."SIGN" = 1
start with "T"."ID_PARENT" = 0
and "T"."ID" = "N"."ID"
connect by "T"."ID PARENT" = prior "T"."ID"
and "T"."ID" = "N"."ID"

Let me emphasize again that plans for these transformed and original
queries are different; and even though they are semantically equivalent,
performance for queries with transformed text will be much worse
because the hierarchy will be built on top of Cartesian joins.

Speaking about outer joins, there is no difference whether they
specified in “join” or “where” clause because the predicate containing (+)
will be evaluated before building the hierarchy.

Also it’s worth mentioning that if the goal is to get all the descendants
up to a specific level, then it makes sense to specify a filter by “level <=n”
in “connect by” condition instead of a where clause because in this case,
building a hierarchy will stop at a specific level. Otherwise the hierarchy
will be built for all levels and the where filter will be applied after that.

Another important point is that the connect by condition evaluates
only for nodes with a level greater than 1. A first level node must be
filtered using a “start with” clause. For example, all first level nodes will be
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returned regardless of whether you specify “level <= 1” or “level <= 0" in
the connect by condition.

Connect by allows you to traverse directed graphs even if they contain
cycles. See Figure 5-1.

Figure 5-1. Directed graph

with graph (id, id_parent) as

(select 2, 1 from dual

union all select 3, 1 from dual

union all select 4, 3 from dual

union all select 5, 4 from dual

union all select 3, 5 from dual)

select level 1lvl, graph.*, connect_by iscycle cycle
from graph

start with id parent = 1

connect by nocycle prior id = id parent;
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LVL ID ID PARENT CYCLE
1 2 1 0
1 3 1 0
2 4 3 0
3 5 4 1

Node with id = 3 is a child node for node with cid = 5 and it was
already processed when we visited node with id = 5. In this case, building
a hierarchy stops for the node and it’s marked as a cycle. In other words,

connect_by_iscycle equals to 1 if the current row has a child that is also its
ancestor.

In general case, neither “start with” nor the prior operator is mandatory
when using the “connect by” clause. This is often used to generate
sequences. A few approaches are shown in Listing 5-4.

Listing 5-4. Generating sequences using connect by

select level id from dual connect by level <= 10;

select rownum id from dual connect by rownum <= 10;

select rownum id from (select * from dual connect by 1 = 1)
where rownum <= 10;

No cycles are identified for these queries because the parent record
is not referred to in the connect by condition using the prior operator.

So the cycle cannot exist when there is no parent-child relationship. Try
to execute any of the queries from Listing 5-4 after adding the predicate
«prior 1 = 1»to “connect by” condition.

Documentation says that “in a hierarchical query, one expression in
[connect by] condition must be qualified with the PRIOR operator to refer
to the parent row.” So if you want to refer to the parent row then you must
use the prior operator but you are not forced to refer to it - that is, connect
by can be used not only to traverse hierarchies.
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The key point for the prior operator is that the value referenced in
it must exist before building the hierarchy. Also when you use a prior
operator you cannot refer columns calculated in a hierarchical query.
This is saying that it’s not possible to calculate values for child nodes

cumulatively. However, there is no such limitation for Recursive subquery

factoring as will be shown in the next chapter.

To demonstrate this limitation let’s consider a task when the goal is
to generate the same sequence as function f returns (type numbers was
defined in the section “Unnesting Collections”).

create or replace function f(n in number) return numbers as
result numbers := numbers();
begin
result.extend(n + 1);
result(1) := 1;
for 1 in 2 .. n + 1 loop
result(i) := round(100 * sin(result(i - 1) + i - 2));
end loop;

return result;
end f;
/

So the function returns a recursive sequence such as current value
equals to sine of the sum of previous value and its index multiplied by

100 and rounded to integer. i-2 is used in the code because the elements

indexed starting with zero.

To highlight the recursive nature of the sequence, it also can be defined

using the recursive function.
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create or replace function f(n in number) return numbers as
result numbers;

begin
if n = 0 then return numbers(1);

else
result := f(n - 1);
result.extend;

result(n + 1) := round(100 * sin(result(n) + n - 1));
return result;
end if;
end f;
/

Given that sine values fall in a range [-1; 1] and function values are
multiplied by 100 and rounded to integers, it’s possible to generate all
possible values for the sequence - range [-100; 100]. With this assumption
the sequence can be generated using “connect by.”

The query in Listing 5-5 generates only the first 14 values instead of 21
because the 14th row is identified as a cycle.

Listing 5-5. Generating values of the recursive sequence using
connect by

with t as

(select -100 + level - 1 result from dual connect by level <= 201)
select level - 1 as id, result, connect by iscycle cycle

from t

start with result =1
connect by nocycle round(100 * sin(prior result + level - 2)) =
result

and level <= 21;
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D RESULT CYCLE
0 1 0
1 84 0
2 -18 0
3 29 0
4 55 0
5 64 0
6 -11 0
7 96 0
8 62 0
9 77 0

10 -92 0
11 -31 0
12 -91 0
13 44 1

The trick with adding “prior sys guid() is not null” to “connect
by” clause helps if we want to avoid cycles and generate all the elements.
sys_guid() returns unique values so none of the rows generated so far are
considered the same as a child row for the current row; thus no cycles are
identified. Please refer to Listing 5-6 to see this approach in action.

Listing 5-6. Handling elements with the same values while
generating the recursive sequence

with t as

(select -100 + level - 1 result from dual connect by level <= 201)
select level - 1 as id, result, connect by iscycle cycle

from t

start with result =1
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connect by nocycle round(100 * sin(prior result + level - 2)) =
result

and prior sys guid() is not null

and level <= 21;

ID RESULT CYCLE
0 1 0
1 84 0
2 -18 0
3 29 0
4 55 0
5 64 0
6 -11 0
7 96 0
8 62 0
9 77 0

10 -92 0

11 -31 0

12 -91 0

13 44 0

14 44 0

15 99 0

16 78 0

17 -25 0

18 -99 0

19 63 0

20 31 0

Now we see that no cycles were identified and so we can remove the
nocycle keyword.
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Summarizing the details of cycle identification:

e Cycle can be identified only if the “connect by”
condition contains a “prior” operator.

o Ifweapplya “prior” operator to any function retuning
unique values, then the cycle will not be identified
because in this case rows with the same values are not
considered as the same nodes of the hierarchy.

The demonstrated approach for running over pre-generated values
can be used even if the recursive formula refers values on two previous
iterations, but in this case it’s necessary to generate all the possible pairs of
previous element and the one before it. Listing 5-7 shows how to generate
Fibonacci numbers using this approach.

Listing 5-7. Generating Fibonacci numbers using connect by

with t as
(select rownum id from dual connect by rownum <= power(2, 15)
/ 15),
pairs as
(select t1.id id1, t2.id id2
from t t1, t t2
where t2.id between (1 / 2) * t1.id and (2 / 3) * t1.id
union all
select 1, 0 from dual
union all
select 1, 1 from dual)
select rownum 1lvl, id2 fib
from pairs
start with (id1, id2) in ((1, 0))
connect by prior idi = id2
and prior (id1 + id2) = id1
and level <= 15;
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LVL FIB
1 0
2 1
3 1
4 2
5 3
6 5
7 8
8 13
9 21

10 34
11 55
12 89
13 144
14 233
15 377

15 rows selected.

We may notice that F; < 2!/i and F; , between Y2 * F; and 34 *F, for all
elements greater than 1 and these conditions were used to reduce the
number of pre-generated pairs. Unlike the previous example, there
isno need to use a trick with prior sys_guid because the sequence is
monotonically increasing for all elements greater than 1 so it’s not possible
to face a cycle.

Elapsed time grows exponentially depending on the level and such
an approach cannot be used in real-life tasks; the main intention was to
demonstrate specifics of the “connect by” clause.

The trick with sys_guid can also be used to generate the number of
copies for each row.
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with t as
(select 'A' value, 2 cnt from dual
union all
select 'B' value, 3 cnt from dual)
select *
from t

connect by level <= cnt
and prior value = value
and prior sys guid() is not null;

T W W = >
w W w NN

As you can see, there is no “start with” condition in a query so the first
level contains all the rows and connection is performed in the scope of
each value until the cnt rows are generated. The trick with sys_guid was
used to avoid cycles, given that all the rows for each root have the same
values. There are many other ways to generate a specified number of
copies for each row and connect by is not the best way to do that.

We can also use this trick while traversing directed graphs. It prevents
Oracle from identifying cycles so the same cycle may be traversed multiple
times. The cycle column equals to zero for all rows as expected.

select level 1lvl, graph.*, connect_by iscycle cycle
from graph
start with id parent = 1
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connect by nocycle prior id = id parent
and prior sys guid() is not null
and level <= 10;

LVL ID ID PARENT CYCLE
1 2 1 0
1 3 1 0
2 4 3 0
3 5 4 0
4 3 5 0
5 4 3 0
6 5 4 0
7 3 5 0
8 4 3 0
9 5 4 0

10 3 5 0

If the goal is to select all the edges including the one closing the cycle,
then we can add the condition “prior id_parent is not null” as shown in
Listing 5-8. In this case the cycle will be identified if we visited the same
node twice. Additional details can be found in the section “Once Again
About Cycles” in the next chapter.

Listing 5-8. Affecting cycle detection by adding “prior id_parent is
not null”

select level 1lvl, graph.*, connect by iscycle cycle
from graph
start with id _parent = 1
connect by nocycle prior id = id parent
and prior id parent is not null;

134



CHAPTER 5  HIERARCHICAL QUERIES: CONNECT BY

LVL ID ID PARENT CYCLE
1 2 1 0
1 3 1 0
2 4 3 0
3 5 4 0
4 3 5 1

Pseudocolumn Generation in Detail

We already considered how join, connect by, and where clauses work
in hierarchical queries. When a query contains pseudocolumns it’s not
possible to say that their values are generated before or after a specific
query clause, but we can state the following rules:

e level is incremented when a row for a new level is
generated

¢ rownum is incremented when a new row is added to a
result set

Listing 5-9 demonstrates the above statements, based on an example

Listing 5-9. Specific of level and rownum pseudocolumns generation

create table t two branches(id, id parent) as

(select rownum, rownum - 1 from dual connect by level <= 10
union all

select 100 + rownum, 100 + rownum - 1 from dual connect by
level <= 10

union all

select 0, null from dual
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union all

select 100, null from dual);

select rownum rn,
level 1vl,
replace(sys_connect by path(rownum, '~'), '~') as path rn,
replace(sys_connect by path(level, '~"), '~") as path 1lvl,
sys_connect_by path(id, '~') path_id

from t_two branches

where mod(level, 3) = 0

start with id_parent is null

connect by prior id = id parent;

RN LVL PATH RN PATH _LVL PATH_ID

1 3 111 123 ~0~1™2

2 6 111222 123456 ~0~1V2V3N4™S

3 9 111222333 123456789  ~0~1~2™3~4~576~78

4 3 444 123 ~100~101~102

5 6 444555 123456 ~100~101~102~103~104~105

6 9 444555666 123456789  ~100~101~102~103~104~105
~106~107~108

6 rows selected.

For each of the two branches Oracle generated 9 levels and 3
rows: rows 1-3 for the first branch and rows 4-6 for the second branch.
Columns path_rn and path_lvl help us to understand how values for
pseudocolumns were generated. Technically, the “where” clause evaluates
when a hierarchy is being built, not afterward.

Also it’s interesting to point out the difference when a rownum/level is
used in a “connect by.”
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Listing 5-10. Difference between using level and rownum in
“connect by” condition

select rownum rn,
level 1vl,
replace(sys_connect by path(rownum, '~'), '~') as path rn,
replace(sys_connect by path(level, '~'), '~") as path 1vl,
sys_connect_by path(id, '~') path_id

from t_two branches

start with id_parent is null

connect by prior id = id_parent

and rownum <= 2;

RN LVL PATH RN PATH_LVL PATH_ID
11 1 ~0
2 12 12 ~0~1

3 13 1 ~100

select rownum rn,
level 1vl,
replace(sys_connect by path(rownum, '~'), '~') as path rn,
replace(sys_connect by path(level, '~"), '~") as path 1lvl,
sys_connect_by path(id, '~') path_id

from t_two branches

start with id parent is null

connect by prior id = id_parent

and level <= 2;

137



CHAPTER 5  HIERARCHICAL QUERIES: CONNECT BY

RN LVL PATH RN PATH_LVL
1 11 1
2 2 12 12
3 13 1
4 2 34 12

PATH_ID

~0

~0™1
~100
~100™101

In the first case Oracle returns two rows for the first branch and a root

row for the second branch. Although the “connect by” condition is false

for it, “start with” is true; thus all the roots are present in the result. In the

second case Oracle simply traverses all the branches up to a specified level,

and obviously the rownum monotonically increases.

Summary

The “connect by” clause is one of Oracle’s specific features and can be used

for traversing parent-child hierarchies or generating sequences without

parent-child dependencies. In general, this feature allows traversing any

directed graphs and a nocycle keyword can be used to handle cycles.
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CHAPTER 6

Recursive Subquery
Factoring

A subquery factoring clause (sometimes also referred to as a “with clause”
or CTE - common table expression) was introduced in Oracle 9.2. At that
time it did not allow us to define recursive subqueries and was mainly
used to decompose the logic into named queries - factor out subqueries
and reference them by names in the main query. CBO can decide whether
to materialize results of factored out subqueries or plug them in as inline
views. In the former case it can improve performance if the named query is
referenced multiple times in the main query, while in the latter case it may
have a negative impact on the performance because the transformation
engine doesn’t treat named queries in the same way as inline views. For
example, on older versions Oracle could have merged an inline view but
not the named query with exactly the same text.

Starting with Oracle 11.2, the subquery factoring clause allows us to
execute a query recursively if a subquery references its own name, which is
presented schematically in Listing 6-1.

Listing 6-1. Recursive subquery factoring

with rec as

(

anchor_query text - anchor member
union all
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recursive query text - recursive member referencing rec

)

select *
from rec

The following algorithm is used for execution:
1. Run anchor member to get base result set Set,.

2. Execute recursive member with result set Set; ; from

previous iteration.
3. Repeat step 2 until empty result set is returned.

4. Return final result set, which is the union all of
Set, ... Set,.

The query in Listing 6-2 traverses the trees from the tree table
introduced in the previous chapter (Listing 5-1). You may notice that the
order of the result differs from the “connect by” approach.

Listing 6-2. Building hierarchies using recursive subquery factoring

with rec(lvl, id, path) as

(

select 1 1vl, id, cast('->"' || id as varchar2(4000))
from tree where id parent in (1, 10)

union all

select r.1vl + 1, t.id, r.path || "->" || t.id

from tree t
join rec r on t.id parent = r.id

)

select 1vl,
rpad(" ', (vl - 1) * 3, " ') || id as id,

path

from rec;
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LVL ID PATH
12 ->2
13 ->3
111 ->11
2 4 ->3->4
2 12 ->11->12
2 13 ->11->13
3 5 ->3->4->5

To return the result in the same order as “connect by” does, you must
specify “search depth first” - in this case all the descendants for the
node will be returned before the other nodes on its level - see Listing 6-3.
Default ordering is “search breadth first” so all nodes from previous
levels are returned before nodes on the current level. As it will be shown
in section “Traversing Hierarchies,” order impacts only how results are
returned, not the way of traversing a hierarchy.

Listing 6-3. Getting the same result as connect by

with rec(root, 1lvl, id, id parent, grand parent) as
(
select id parent, 1 1vl, id, id parent, cast(null as number)
from tree where id_parent in (1, 10)
union all
select r.root, r.1vl + 1, t.id, t.id parent, r.id parent
from tree t
join rec r on t.id parent = r.id
)
search depth first by id set ord
select root,
1vl,
rpad(" ', (vl - 1) * 3, " ") || id as id,
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id_parent,

grand_parent,

ord,

decode(1vl + 1, lead(lvl) over(partition by root order
by ord), 0, 1) is leaf

from rec;

ROOT LVL ID ID PARENT GRAND PARENT ORD IS LEAF
1 1 1 1
1 1 2 0
1 4 3 1 3 0
1 5 4 4 1
10 111 10 5 0
10 2 12 11 10 6 1
10 2 13 11 10 7 1

7 rows selected.

There are no predefined pseudocolumns for recursive subquery
factoring so the calculation logic should be implemented manually. For
example, a node is not a leaf node if it’s followed by node on the next level
when search depth first is specified - this logic was used to calculate is_leaf
column.

Mechanics of calculating a path from the previous example is a
bit more interesting. An expression for a path references a path from a
previous iteration. This is one of the most important differences from
“connect by,” which allows referencing only existing columns (not
calculated ones). So if the goal is to calculate a path not from the root to
the current node but in the opposite direction - from current node to root,
then it can be done by replacing “r.path || '->" || t.id” with “'->"
|| t.id || r.path” On the other hand, it’s not possible with connect by
and built-in capabilities.
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Listing 6-4 shows how recursive sequences from the previous chapter
can be generated using recursive subquery factoring. In the first case the
current value depends only on the previous value while in the second case
it depends on the previous value and the one before it. Recursive subquery
factoring allows referring only values from previous iteration so in order
to be able to use values from an i-2 iteration, we introduced an auxiliary
column.

Listing 6-4. Generating of recursive sequences

with t(id, result) as

(

select 0 id, 1 result from dual

union all

select t.id + 1, round(100 * sin(t.result + t.id))
from t

where t.id < 20

)

select * from t;

with t (1vl, result, tmp) as

(

select 1, 0, 1 from dual

union all

select 1vl + 1, tmp, tmp + result
from t

where 1vl < 15)

select 1vl, result from t;

If we need to use values from several previous iterations, we can either
add multiple auxiliary columns or use a collection column.

Anyway, such approaches are much more efficient than “connect by”
because there is no need for running over pre-generated values to generate
each new row.
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As it was already mentioned, recursive subquery factoring allows
referring values calculated on a previous iteration. This technique can
be used for root-finding using the bisection method. This method is
demonstrated purely to highlight capabilities of the SQL language, and
there is no practical need to use SQL for this task.

Let’s consider function y, which has different signs in points 1 and 2.

create or replace function y(x in number) return number as
begin return x*x - 2; end;

Listing 6-5 shows how to find the root in the range [1; 2] with
precision 0.01.

Listing 6-5. Finding the root using bisection method and recursive
subquery factoring clause

with t(id, x, x0, x1) as
(
select 0, 0, 1, 2
from dual
union all
select t.id + 1,
(t.xo + t.x1) / 2,
case
when sign(y(x0)) = sign(y((t.x0 + t.x1) / 2))
then (t.x0 + t.x1) / 2
else x0
end,
case
when sign(y(x1)) = sign(y((t.x0 + t.x1) / 2))
then (t.x0 + t.x1) / 2
else x1
end
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from t
where abs((t.x0 + t.x1) / 2 - t.x) > 1e-2
)
select t.*, (x0+x1)/2 result from t;
ID X X0 X1 RESULT
0 0 1 2 1.5
1 1.5 1 1.5 1.25
2 1.25 1.25 1.5 1.375
3 1.375 1.375 1.5 1.4375
4 1.4375 1.375 1.4375 1.40625
5 1.40625 1.40625 1.4375 1.421875
6 1.421875 1.40625 1.421875 1.4140625

The algorithm divides the range on each step according to following
rule: if sign of the function in the midpoint is the same as at the right border,
then move the right border to the midpoint or else move the left border to
the midpoint. Repeat iterations unless the difference between the midpoint
on the current step and the midpoint on the previous step is less than 0.01.

Required precision was satisfied on the 6th iteration and the found
root is a midpoint on the next iteration, which is 1.4140625.

Range borders on each iteration were calculated using values from
a previous iteration. It would not be possible to use “connect by” to
implement this approach. The term “iteration” instead of level was used to
highlight the iterative nature of the algorithm.
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Traversing Hierarchies

Documentation says that the «<subquery_factoring_clause supports
recursive subquery factoring (recursive WITH) and lets you query
hierarchical data. This feature is more powerful than CONNECT BY
in that it provides depth-first search and breadth-first search, and
supports multiple recursive branches». It sounds like “connect by”
always does depth-first search while a traversing algorithm for recursive
subquery factoring can be affected by specifying depth-first or breadth-
first in search_clause. Let’s check whether this is the correct impression
or not.

Function stop_at sets a flag if a specific node was visited and returns a
not null value if the flag is set.

create or replace function stop_at(p_id in number, p_stop in
number)
return number is
begin
if p_id = p_stop then
dbms_application info.set client info('1');
return 1;
end if;
for i in (select client info from v$session where sid =
userenv('sid')) loop
return i.client_info;
end loop;
end;
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Listing 6-6. Specifying breadth-first and depth-first search
exec dbms_application _info.set client info('');
PL/SQL procedure successfully completed.

with rec(lvl, id) as
(
select 1, id

from t_two branches where id parent is null
union all
select r.1vl + 1, t.id

from t_two branches t

join rec r on t.id parent = r.id
where stop at(t.id, 101) is null
)
search breadth first by id set ord
--search depth first by id set ord

select *
from rec;
LVL ID ORD
0 1
100 2
1 3

exec dbms_application_info.set_client_info('');
PL/SQL procedure successfully completed.

with rec(lvl, id) as
(

select 1, id
from t_two_branches where id parent is null
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union all
select r.1vl + 1, t.id

from t_two branches t

join rec r on t.id parent = r.id
where stop at(t.id, 101) is null
)
--search breadth first by id set ord
search depth first by id set ord

select *
from rec;
LVL ID ORD
1 0 1
1
100

Oracle 11.2 and 12.1 return only 3 rows in both cases; however it was
expected that a query will return all nodes for the first branch for depth-
first search because none of them equals 101. So it looks like irrespective
of whatever approach we specify in the search clause, Oracle always does a
breadth-first search and after that orders a result accordingly. On the other
hand, Oracle 12.2 returns the following results.

LVL ID ORD
1 0 1
1 100 2
2 1 3
3 2 4
4 3 5
5 4 6
6 5 7
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7 6

8 7
8 10
10 9 11
11 10 12

12 rows selected.

LVL ID ORD
1 0 1
2 1 2
3 2 3
4 3 4
5 4 5
6 5 6
7 6 7
8 7 8
9 8 9
10 9 10
11 10 11
1 100 12

12 rows selected.

This means that it does a depth-first search regardless of whatever
is specified in the search_clause - in both cases all the nodes for the first
branch are returned.

Let’s now check the result for connect by.
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select rownum rn, level 1lvl, id, id parent
from t_two branches
start with id parent is null
connect by prior id = id_parent
and stop at(id, 101) is null;

RN LVL ID ID PARENT
1 1 0
2 2 1 0
3 3 2 1
4 4 3 2
5 5 4 3
6 6 5 4
7 7 6 5
8 8 7 6
9 9 8 7
10 10 9 8
11 11 10 9
12 1 100

12 rows selected.

It’s the same as for the recursive subquery factoring on 12.2 and depth-
first search.

To summarize, connect by always traverses a hierarchy using a depth-
first search while the behavior for he recursive subquery factoring has
changed from for breadth-first to depth-first search in version 12.2. The
search_clause has an impact only on the final order, not on the algorithm
Oracle uses to traverse the hierarchy. For connect by it’s easy to mimic a
breath-first search by ordering a result by level.
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Once Again About Cycles

Let’s investigate how to handle a cycle using recursive subquery factoring
and a graph table from the previous chapter (Figure 5-1).

Listing 6-7. Detecting cycle by ID

with t(id, id parent) as
(
select * from graph where id_parent = 1
union all
select g.id, g.id parent

from t

join graph g on t.id = g.id_parent
)
search depth first by id set ord
cycle id set cycle to 1 default 0
select * from t;

ID ID PARENT ORD CYCLE
2 1 10

3 1 20

4 3 30

5 4 40

3 5 51

“cycle id set cycle to 1 default 0” instructs Oracle to set the “cycle”
column to 1 if cycle by id is detected. Oracle will not look for child rows for
the offending row, but it will continue to look for other noncyclic rows. A
row is considered to form a cycle if one of its ancestor rows has the same

values for the cycle columns. In other words, if row is marked as a cycle,
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then one of the existing rows in the result set has the same value in the
specified column.

In the above example, the row with ID = 3 was marked as a cycle
because ID = 3 already existed in a result. In the case of a “connect by”
clause the row with ID = 5 was marked as a cycle because its child (row
with ID = 3) is also its ancestor - see Figure 5-1 in the previous chapter.

Unlike connect by, we can specify which column to use to detect a
cycle. So if we specify id_parent in a cycle_clause, then the result will be a
bit different - the execution stops when we face a node with ID_PARENT =3
for a second time.

Listing 6-8. Detecting cycle by ID_PARENT

with t(id, id parent) as

(
select * from graph where id parent = 1
union all
select g.id, g.id parent
from t
join graph g on t.id = g.id parent

)
search depth first by id set ord

cycle id parent set cycle to 1 default 0
select * from t;

ID ID PARENT ORD C
2 1 10
3 1 20
4 3 30
5 4 4 0
3 5 50
4 3 61
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We may notice that cycle by ID was identified in the same row as it was
for the connect by query and condition “nocycle prior id = id_parent and
prior id_parent is not null” (see Listing 5-8). However, it’s not always the
case. If the root node is part of the cycle, then results may differ. Let’s have
alook at the result when we start from the node with ID = 3.

Listing 6-9. Building hierarchy from the node which is part of the
cycle

select level 1lvl, graph.*, connect by iscycle cycle
from graph

start with id = 3

connect by nocycle prior id = id parent;

LVL ID ID PARENT CYCLE
1 3 1 0
2 4 3 0
3 5 4 1
1 3 5 0
2 4 3 0
3 5 4 1

select level 1lvl, graph.*, connect by iscycle cycle
from graph
start with id = 3
connect by nocycle prior id = id parent
and prior id_parent is not null;
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LVL ID ID PARENT CYCLE

1 3 1 0
2 4 3 0
3 5 4 0
4 3 5 1
1 3 5 0
2 4 3 0
3 5 4 1

with t(id, id _parent) as

(

select * from graph where id = 3

union all

select g.id, g.id parent

from t

join graph g on t.id = g.id parent
)
search depth first by id set ord
cycle id set cycle to 1 default o
select * from t;

ID ID PARENT ORD C
3 1 10
4 3 20
5 4 30
3 5 41
3 5 50
4 3 60
5 4 70
3 5 81
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The node with ID = 3 has two parents so we traverse the cycle two times.

In the last query in the second cycle, edge (5, 3) appears twice because
ID with the same value must appear twice to detect a cycle. On the other
hand, the result of the second query from Listing 6-9 looks the most
natural because for both cycles it contains all the edges forming the cycle
without any recurrences.

In addition to built-in capabilities to detect cycles we can implement
our own logic as shown in Listing 6-10. cntl is the number of occurrences
of ID in the concatenation of ancestor IDs, similarly cnt2 is the number of
occurrences of ID in the concatenation of ancestor PARENT_IDs. If you
uncomment filters by cntl/cnt2, then the result will be the same as for
recursive subquery factoring/connect by queries from Listing 6-9. There is
no need to specify cycle_clause when such filters are used.

Listing 6-10. Manual implementation of the logic to detect cycles

with t(id, id_parent, path_id, path_id parent, cnt1, cnt2) as
(

select g.*,
cast('->" || g.id as varchar2(4000)),
cast('->" || g.id parent as varchar2(4000)),
0,
0

from graph g
where id = 3
union all
select g.id,
g.id parent,

t.path id || '->" || g.id,
t.path_id parent || '->' || g.id parent,
regexp_count(t.path id || '->", '->" || g.id || '->"),
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regexp_count(t.path_id parent || '->", '->' || g.id
I t->")
from t
join graph g
on t.id = g.id parent
--and t.cnt1 = 0
--and t.cnt2 = 0
)
search depth first by id set ord
cycle id set cycle to 1 default o
select * from t;

ID ID PARENT PATH_ID PATH ID PARENT  CNT1 CNT2 ORD C
3 1 ->3 ->1 0 0 10
4 3 ->3->4 ->1->3 0 0 20
5 4 ->3->4->5 ->1->3->4 0 0 30
3 5 ->3->4->5->3  ->1->3->4->5 1 1 41
3 5 ->3 ->5 0 0 50
4 3 ->3->4 ->5->3 0 0 60
5 4 ->3->4->5 ->5->3->4 0 1 70
3 5 ->3->4->5->3  ->5->3->4->5 1 1 8 1

Limitations of the Current Implementation

The query in a recursive member has a number of limitations; in
particular, you cannot use distinct, group by, having, connect by, aggregate
functions, model, etc., in it. One may ask whether this is a limitation of

the current implementation or the recursive execution does not make
sense when such a complex logic is used. My inclination is that some of
these limitations will be removed in the future. On the other hand, we can
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use workarounds for some limitations even in the current version, but
that may look a bit awkward. In particular, we can use analytic functions
and additional filters to get an aggregated result - although this is not
something to be used in real-life tasks.

The following will be demonstrated mainly for academic purposes. So,
let’s assume we need to build a parent-child hierarchy where the parent is
the sum of all IDs on the current level.

with to(id, id parent, letter) as
(select 1, 0, 'B' from dual
union all select 2, 1, 'D' from dual
union all select 3, 1, 'A" from dual
union all select 10, 5, 'C' from dual
union all select 66, 6, 'X' from dual),
t(id, id_parent, sum id, lvl, str, rn) as
(select id, id parent, id, 1, letter, 1 from t0 where
id parent = 0
union all
select
t0.1id,
t0.1id_parent,
sum(to.id) over (),
t.lvl + 1,
listagg(letter,
OF

rownum

, ') within group (order by letter) over

from t
join t0 on t.sum id = t0.id parent and t.rn = 1)
select * from t;
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ID ID PARENT SUM_ID LVL STR RN
0 1 1B 1
1 2A, D 2
1 2A, D 1
10 5 10 3C 1

Analytic functions were used instead of aggregate ones and “t.rn = 1"
was added to the join condition to avoid duplicates, because the value of
the analytic function is the same for all rows and they are not grouped into
one row per group.

If we are interested only in an aggregated result for each level, then it
can be achieved using a query like this:

select sum_id, 1lvl, str from t where rn = 1;

Analytic functions in a recursive member would cause «<ORA-32486:
unsupported operation in recursive branch of recursive WITH clause» in
Oracle 11.2.0.1; however it was fixed in 11.2.0.3.

Summary

“Recursive with” is defined in standard SQL:1999 while the “connect by”
clause is an Oracle-specific feature. Nevertheless, it makes sense to use
connect by instead of recursive subquery factoring in all cases where
it's possible, because it’s better optimized and works faster. As it was
mentioned previously, it’s not possible to reference calculated expressions
in “connect by” queries while recursive with provides this facility. So if any
cumulative-like calculations are required while traversing a hierarchy,
then recursive subquery factoring may be the best option.

Traversing hierarchies is not the only application of recursive subquery
factoring. It can be used for various tasks when the same logic has to be
applied to a recordset multiple times. It's important to highlight that the
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final result contains recordsets from all the iterations while on current
iteration it’s possible to access rows only from the previous one. The
necessity to return recordsets from all the iterations may cause intensive
work area usage and other overhead costs. So if you do not need recordsets
from all iterations but only from the last one, then it’s reasonable to use
PL/SQL loops and collections or temporary tables.

Even though recursive subquery factoring and connect by have built-
in capabilities to handle cycles, it makes sense to use them only in trivial
cases. For more complex cases, procedural approaches are better. Anyway,
connect by and recursive subquery factoring handle cycle a bit differently
so it may be important to know the details.
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Model

One may say that the model clause is the most powerful SQL feature,
meaning that it can be used to solve numerous tasks that otherwise would
not be resolvable using SQL. This can be accomplished not only because
the model clause considerably extends possibilities of declarative SQL,
but in addition to that it introduces ability of iterative computations in
SQL on top of a recordset. On the other hand, the model clause has some
issues with scalability and, in general, a class of problems where the model
shines is quite limited. In many cases PL/SQL is preferable even though a
result can be achieved using a model clause, but first things first.

A model clause allows you to treat a recordset as a multidimensional
cube by mapping columns into three groups: partitions, dimensions, and

measures.

o Partitions specify logical groups and rules of the model
are applied to partitions independently. Specifying
partitions may help to dramatically leverage power of
parallel execution.

e Dimension columns are used to define a
multidimensional cube and, by default, a combination
of all the dimensions uniquely identifies cells in the
cube. From another perspective we may say - to
uniquely identify a row in a spreadsheet or a value in a
multidimensional array.
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e Measures are values of multidimensional cubes
that can be calculated using model rules. As a rule,
measures are numeric values but, unlike many others
tools for multidimensional analysis, Oracle supports
dates and strings or even RAW values as measures.

Partitions, dimensions, and measures can be specified not only as
mappings to columns of the query but also as expressions.
Let’s see how it works using an example from Listing 7-1.

Listing 7-1. Basic example of the model clause

with t(id, value) as

(

select 1, 3 from dual

union all select 2, 9 from dual

union all select 3, 8 from dual

union all select 5, 5 from dual

union all select 10, 4 from dual

)

select * from t

model

-- return updated rows

dimension by (id)

measures (value, 0 result)

-- rules

(
result[id »>= 5] = sum(value)[id <= cv(id)],
result[0] = value[10] + value[value[1]]

)5
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ID VALUE RESULT
1 3 0
2 9 0
3 8 0
5 5 25

10 4 29
0 12

We defined a single dimension by ID column and two measures: one
as mapped to a value column and another one as a zero.

Rule result[id >= 5] = sum(value)[id <= cv(id)] is applied only
to rows with dimension values greater or equal to 5, which means two rows
in our example - with ID = 5 and ID = 10. The value of the expression is a
summarized measure for all the rows with dimension value equal or less
than the current dimension value. The function cv is used on the right
side of the rule to access current dimension value when multiple rows are
referenced on the left side of the rule.

Note You may also see function currentv in documentation for
Oracle 10g Release 1, but it does not appear in documentation for
later versions although it looks like it still works. Similarly model
keyword is interchangeable with spreadsheet keyword but the
latter is no longer documented.

Rule result[0] = value[10] + value[value[1]] means that the
measure value for a cell with dimension value 0 is a sum of measure value
for ID = 10 and ID = value[1], which is 3. Please note that the cell with
dimension value 0 did not exist in original recordset and was added during
the model clause evaluation. As will be shown later, this behavior may be
adjusted. value[value[1]] is an example of nested cell reference.
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So we can consider measures as values of multidimensional arrays and
dimensions as indices to address the values; however, measure values also
can be used to access the cells.

If we uncomment the return updated rows in Listing 7-1, then the
result will contain only rows with applied rules - that is, with IDs 5, 10,
and 0. The default value is return for all rows. The rules keyword is
optional unless you want to specify iterations.

There are two notations to address cells - symbolic dimension
reference and positional dimension reference. In case of a symbolic
dimension reference, there must be a predicate containing the name of the
dimension; otherwise the dimension reference is positional - for example,
constant value, expression, or even a for loop. Differences between the
notations are important for the left side of the rule which identifies the
cells that are updated with the values from the right side of the rule.

The way how Oracle treats missing cells can be specified using
keywords update/upsert all/upsert. Update only updates existing
cells, upsert (default value) updates existing cells and creates missing cells
in case of a positional reference while upsert all also creates missing
cells for mixed references if the dimension values used in the symbolic
reference existed in the original recordset. Let’s see how it works for
specific example as shown in Listing 7-2.

Listing 7-2. Upsert all in action

with t(dim1, dim2, value) as

(

select 0, 0, 1 from dual

union all select 0, 1, 2 from dual
union all select 1, 0, 3 from dual
)

select * from t

model
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dimension by (dimi, dim2)
measures (value, cast(null as number) result)
rules upsert all

(
result[o, 0] = -1,
result[dimi=1, dim2=0] = -3,
result[-1, for dim2 in (select count(*) from dual)] = -4,
result[-2, dim2=1] = -10,
result[-3, dim2=-1] = -100,
result[-4, -1] = -1000
)
order by dimi, dim2;
DIM1 DIM2 VALUE RESULT
-4 -1 -1000
-2 1 -10
-1 1 -4
0] 0 1 -1
1
0 -3

There are 3 original rows and 3 created ones in the query output from
Listing 7-2. Cells with values -4 and -1000 have been added because the
positional notation was used for both dimensions. The cell with value -10
was added because the value for symbolic notation dim2=1 existed in the
original recordset even though the positional value for dim1 did not exist.
The measure with value -100 was not added because the value -1 used in
symbolic notation for dim2 did not exist. The measure value for cell [0, 1]
is unknown because no rule was specified for it. And finally, the result for
cells [0, 0] and [dim1=1, dim2=0] was calculated because they existed in
the original recordset.
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If we specify upsert then measure -10 will be excluded from the result
set, and if we specify update then cells with the result values -4 and -1000
will also disappear.

Simply speaking, symbolic references are used when we aim to work
with existing data only while positional references can be used if there
may be a necessity to add new cells - for example, in case of forecasting or
interpolation. Mixed reference makes sense when some dimensions are
supposed to be fixed while another can be extended with new members.

If we want to reference all the members of the dimension then we
can use the keyword any for positional reference or the is any predicate
for symbolic reference. The behavior is the same in both cases - the rule
is applied to all the members of the dimension and new ones cannot be
created.

When the left side of the rule references multiple rows, the order may
be very important as demonstrated in Listing 7-3.

Listing 7-3. Specifying order on the left side of the rule

with t(id, value) as

(select rownum, rownum from dual connect by level <= 3)

select *

from t

model

dimension by (id)

measures (value, 100 r1, 100 12)

(
ri[any] order by id asc = nvl(ri[cv(id)-1], 0) + value[cv(id)],
r2[id is any] order by id desc = nvl(r2[cv(id)-1], 0) +
value[cv(id)]

)
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order by id;

ID VALUE R1 R2
1 1 1 1
102

6 103

When we specify ascending order the result is a cumulative sum while
for descending order, the result is completely different. We got 102 and 103,
which are the sum of the measure value for current row and measure r2 for
the previous row, which was initialized as 100. There is no previous row for
the first row so the result is simply a measure value for that row.

It always makes sense to specify the order on the left side of the rule if
it'’s applied for multiple rows because

o Itimproves performance;
o Itadds clarity to the solution;

o Ithelpsto avoid ORA-32637: Self cyclic rule in
sequential order MODEL.

Listing 7-4 shows an example of recursive measure. Oracle cannot
resolve this dependency but if we uncomment “order by id,” then the result
will be calculated successfully. Try to guess what the result is without
running the query.

Listing 7-4. Recursive measure

with t as

(select rownum id from dual connect by level <= 3)
select *

from t

model

dimension by (id)
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measures (id result)
rules
(

result[any] /*order by id*/ = sum(result)[any]
);
(select rownum id from dual connect by level <= 3)

*

ERROR at line 2:
ORA-32637: Self cyclic rule in sequential order MODEL

By default, all the rules are evaluated in the order they are specified
in a query. This also can be explicitly specified using an optional keyword
sequential order. This behavior may be changed if we specify automatic
order so that dependencies among the cells are taken into account.

Listing 7-5. Model with automatic rule ordering

with t as
(select rownum id from dual connect by level <= 3)
select *
from t
model
dimension by (id)
measures (0 t1, 0 x, 0 t2)
rules automatic order
(
t1[id] = x[cv(id)-1],
x[id] = cv(id),
t2[id] = x[cv(id)-1]
)
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order by id;

ID T1 X T2
1 1

1 1

2 2

If you omit automatic order in Listing 7-5, then values for t1 would be
NULL, 0, 0.

As it was already shown, you can specify multiple rules for the same
measure; moreover Oracle will not complain even if you specify multiple
rules for the same measure and the same cells; however this should be
avoided. For example, we can add fourth rule t1[id] = x[cv(id)] +
t2[cv(id)] into the query from Listing 7-5, but after that, rule t1[id] =
x[cv(id)-1] is completely overridden and should be removed.

Whatever order is specified, rules are calculated one by one. This
means the first rule is evaluated for all cells referenced on the left side and
then the second rule is evaluated for all cells referenced on its left side and
so on. In other words, rules are applied by columns and not by rows.

The keywords automatic/sequential order define a query plan.
For sequential order you'll see SQL MODEL ORDERED in the plan, and in the
case of automatic order it can be SQL MODEL CYCLIC/SQL MODEL ACYCLIC
depending on whether cyclic dependencies exist or not.

In a simple case cyclic dependency may be in the scope of the same
measure (when one cell references another in the first rule and the other
way round in the second rule) or for different measures and the same
cell. Frankly speaking, I did not come across useful examples of models
with cyclic dependencies so I'd suggest that you always specify rules in
correct order and use default value sequential order; and in addition to
that, specify the order on the left-hand side of each rule that references
multiple cells.

169



CHAPTER7  MODEL

In case of ORDERED/ACYCLIC models you also may see FAST in the plan
if all the rules use a single cell reference.
For example, for this rule

rules automatic order (x[1] = cv(id), x[-1] = cv(id))
there will be SQL MODEL ACYCLIC FAST in the plan while for this one
rules automatic order (x[for id in (1, -1)] = cv(id))

or this one

rules automatic order (x[id in (1, -1)] = cv(id))

it will be SOL MODEL ACYCLIC.

The logical difference between the second and third examples is that
the second one uses positional reference while the third one uses symbolic
reference, so if some cells are missing in the source recordset, then the
result will differ.

If we specify automatic order for the query from Listing 7-4, then
Oracle will throw an exception that the model does not converge.

Listing 7-6. Model with cyclic rule and automatic order

with t as
(select rownum id from dual connect by level <= 3)
select *
from t
model
dimension by (id)
measures (id result)
rules automatic order
(
result[any] /*order by id*/ = sum(result)[any]

)5
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from t
*
ERROR at line 4:
ORA-32634: automatic order MODEL evaluation does not converge

According to documentation, «Convergence is defined as the state in
which further executions of the model will not change values of any of the
cell in the model». Empirically we can figure out that, and at most three
(four) steps are used to check convergence.

Listing 7-7. Checking convergence

select * from (select 1 x from dual)

model dimension by (x) measures (0 as result, 64 tmp)
rules automatic order

(result[1]=ceil(tmp[1]/4), tmp[1]=result[1]);

X RESULT T™P

select * from (select 1 x from dual)
model dimension by (x) measures (0 as result, 65 tmp)
rules automatic order
(result[1]=ceil(tmp[1]/4), tmp[1]=result[1]);
select * from (select 1 x from dual)
*
ERROR at line 1:
ORA-32634: automatic order MODEL evaluation does not converge

In the first case values for (result, tmp) were 16, 4, 1, and 1 again -
model converged; in the second case values on the third and fourth steps
did not match, which led to an exception.
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automatic order may change the plan operation from MODEL ORDERED
to MODEL ACYCLIC when there are no cyclic dependencies (refer, for
example, to Listing 7-5 to check that), but the desired result can be
achieved by just specifying rules in a proper order.

In all the examples so far (strictly speaking excluding acyclic model
example), model rules have been evaluated only once; however it’s
possible to evaluate rules iteratively until the termination condition
is satisfied. To demonstrate iterative computations let’s implement a
bisection method using the same interval and function as in Listing 6-5.

Listing 7-8. Implementation of bisection method using iterative model

with t as (select 0 id from dual)

select *

from t

model

dimension by (id)

measures ((1+2)/2 x, 1 x0, 2 x1)

rules iterate (1e2) until abs(x[0]-previous(x[0])) < 1e-2

(

x[iteration_number+1]
x0[iteration number+1]

x[0],
case when sign(y(x[0])) =
sign(y(xo[iteration number]))
then x[0]
else x0[iteration number]
end,
case when sign(y(x[0])) =
sign(y(x1[iteration number]))
then x[0]
else x1[iteration number]
end,

x1[iteration number+1]

x[0] = (xo[iteration number+1] + x1[iteration number+1])/2
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order by id;

ID X X0 X1
0 1.4140625 1 2
1 1.5 1 1.5
2 1.25 1.25 1.5
3 1.375 1.375 1.5
4 1.4375 1.375 1.4375
5 1.40625 1.40625 1.4375
6 1.421875 1.40625 1.421875

7 rows selected.

Iteration number is a function that returns an integer representing
the completed iteration through the model rules starting with 0. The
maximum possible iteration number in the above example is limited
with 100 (this can be specified only using a constant, not an expression);
however, there is termination condition abs(x[0]-previous(x[0])) <
le-2 that means the absolute difference between root on current iteration
and on the previous iteration should be less than 0.01. So computation
stopped on the 6th step and the result is the same as the one calculated
using the subquery factoring clause - 1.4140625. The previous function is
used to refer the value on the previous iteration.

There is no way to figure out whether a model is iterative or not based
on a query plan. Query plan operations are the same as for non-iterative
models. Moreover, a stats column in the plan does not reflect the number
of iterations with enabled runtime execution statistics. A query plan for
Listing 7-8 will be the following.
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select * from dbms xplan.display cursor(format => 'IOSTATS LAST');

| Id | Operation | Name | Starts | E-Rows | A-Rows |  A-Time |
| 0 | SELECT STATEMENT | | 1| | 7 | 00:00:00.01 |
| 1| SORT ORDER BY | | 1| 1| 7 | 00:00:00.01 |
| 2| SOL MODEL ORDERED FAST | | 1| 1| 7 | 00:00:00.01 |
| 3]  FAST DUAL | | 1| 1| 1 | 00:00:00.01 |

In the model clause we can define reference model(s) that can be
used as “lookup arrays.”

Listing 7-9. Using reference models

with sales(year, currency, value) as
(select '2015', 'GBP', 100 from dual
union all select '2015', 'USD', 200 from dual
union all select '2015', 'EUR', 300 from dual
union all select '2016', 'GBP', 400 from dual
union all select '2016', 'EUR', 500 from dual)
, usd rates(currency, rate) as
(select 'GBP', 1.45 from dual
union all select 'USD', 1 from dual
union all select 'EUR', 1.12 from dual)
select *
from sales
model
reference usd rates model on (select * from usd rates)
dimension by (currency)
measures (rate)
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main sales model
dimension by (year, currency)
measures (value, 0 usd value)
(
usd value[any, any] order by year, currency =
value[cv(year), cv(currency)] * usd rates model.

rate[cv(currency)]

)

order by 1, 2;

YEAR CUR VALUE USD_VALUE
2015 EUR 300 336
2015 GBP 100 145
2015 USD 200 200
2016 EUR 500 560
2016 GBP 400 580

As was stated at the beginning of this chapter, a combination of all
the dimensions uniquely identifies the cell in the cube, but this rule can
be relaxed if you specify unique single reference keyword. Query
from Listing 7-10 would throw an exception ORA-32638: Non unique
addressing in MODEL dimensions with the default value for addressing
which is unique dimension.

Listing 7-10. Model with unique single reference

with t(id, value) as

(select trunc(rownum/2), rownum from dual connect by level <= 3)
select *

from t

model

unique single reference
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dimension by (id)

measures (value, 0 result)
(result[o] = 111)

order by id;

ID VALUE RESULT
111

0

3 0

The last thing to mention regarding basic functionality is the
treatment of null values. There are two special functions for model clause
presentv/presentnnv that work similarly to nvl2. Presentv checks if
the value existed in the recordset prior to execution of the model clause
while presentnnv in addition to that also checks if the value was not null.
Listing 7-11 shows differences between presentv, presentnnv, and nvl2.

Listing 7-11. Comparing results for presentv, presentnnv, and nvl2

with t(id) as

(select cast('base' as varchar2(10)) from dual)

select *

from t

model

ignore nav

dimension by (id)

measures (cast(null as varchar2(10)) msr_base,
cast(null as varchar2(10)) msr_calc,
to _number(null) num)

(
msr_base['calc'] = '1',
msr_base[ 'presentv'] = presentv(msr base['base'], '+', '-'),
msr_base[ 'presentnnv'] = presentnnv(msr_base[ 'base'], '+', '-'),
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msr_base['nv12'] = nvl2(msr base['base'], '+', '-'),
msr_calc['presentv'] = presentv(msr base['calc'], '+', '-'),
msr_calc['presentnnv'] = presentnnv(msr base['calc'], '+', '-'),
msr_calc['nvl2'] = nvl2(msr_base['calc'], '+', '-'),
num[any] = num[-1]

)

order by id;

1D MSR_BASE  MSR_CALC NUM
base 0
calc 1 0
nv12 - + 0
presentnnv - - 0
presentv  + - 0

Missing numeric measures are treated as zeros instead of nulls when
you specify ignore nav. All values for the num column would be nulls with
the default behavior - keep nav.

Analytic functions can be used in a model clause to implement
advanced logic. Listing 7-12 demonstrates a usage example.

Listing 7-12. Analytic functions in model clause

with t(value) as

(select column value from table(sys.odcivarchar2list('A','B’',
'c’,'D','EY))

select *

from t

model

ignore nav

dimension by (row number() over (order by value) id)

measures (value, cast(null as varchar2(4000)) result, count(*)
over () num)
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(

result[mod(id, 2) = 1] = listagg(value, ', ') within group
(order by id) over (),

num[mod(id, 2) = 1] = count(*) over (order by id desc)

)
order by id;
ID VALUE RESULT NUM
1A A, C, E 3
2 B 5
3C A, C, E 2
4D 5
5 E A, C, E 1

The same logic can be implemented using aggregate functions in the
following way:

result[mod(id, 2) = 1] = listagg(value, ', ') within group
(order by null)[mod(id, 2) = 1],
num[mod(id, 2) = 1] = count(*)[mod(id, 2) = 1 and id >= cv(id)]

The crucial difference between aggregate functions in a model clause
and an regular aggregate functions is that aggregate functions in model
clauses do not require grouping. Instead you need to specify the range of
cells for the aggregate function.

Aggregate functions allow flexible addressing of cells’ ranges unlike
analytic functions. But analytic functions accept both measures and
dimensions as arguments while an aggregate function can be applied
only to measures. Also it’s not possible to specify ordering on the left
side of the rule when an analytic function is used. Rule 1 and rule 3 from
Listing 7-13 demonstrate limitations of analytic and aggregate functions
correspondingly.
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Listing 7-13. Limitation of analytic and aggregate functions in
model clause

select *
from (select rownum id from dual connect by rownum <= 3) t
model
dimension by (id)
measures (id value, 0 r1, 0 12)
(
-- 1)
-- ORA-30483: window functions are not allowed here
-- r1[any] order by id = sum(id) over (order by id desc)
--2)
ri[any] /*order by id*/ = sum(id) over (order by id desc),
-- 3) ORA-00904: : invalid identifier
-- r2[any] order by id desc = sum(id)[id >= cv(id)]
_- 4)
r2[any] = sum(value)[id >= cv(id)]

To explore flexibility of addressing for aggregate functions, let's get
back to the example regarding limitations of analytic functions shown in
Listing 3-6. The first limitation is not an issue at all. Listing 7-14 shows
how to calculate the number of points within the distance of 5 by two
coordinates.

Listing 7-14. Aggregate functions in model clause with conditional
addressing by multiple dimensions

with points as
(select rownum id, rownum * rownum x, mod(rownum, 3) y
from dual
connect by rownum <= 6)
, t as
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(select p.*,

-- the number of points within the distance of 5 by x
coordinate

-- cannot be solved with analytic functions for more
than one coordinate

count(*) over(order by x range between 5 preceding and 5

following) cnt,

-- sum of the distances to the point (3, 3) for all rows

-- between unbounded preceding and current row ordered
by id

-- cannot be solved using analytic function if required
to calculate

-- distance between other rows and current row rather
than a constant point

round(sum(sqrt((x - 3) * (x - 3) + (y - 3) * (y - 3)))

over(order by id),

2) dist
from points p)
select *
from t
model

dimension by (x, y)
measures (id, cnt, dist, 0 cnt2)
rules
(
cnt2[any, any] = count(*)[x between cv(x) - 5 and cv(x) + 5,
y between cv(y) - 1 and cv(y) + 1]

)
order by id;

However, there is no straightforward solution for the second limitation
because it’s not possible to refer a measure for the current row in the
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expression for an aggregate function. As a workaround we can use an
iterative model and do as many iterations as the number of rows to
maintain two auxiliary measures with coordinates for the current row. The
idea is shown in Listing 7-15, but this approach looks a bit awkward and
performance is inefficient.

Listing 7-15. Using iterative model as a workaround for limitation
of aggregate functions

with points as
(select rownum id, rownum * rownum x, mod(rownum, 3) y

from dual
connect by rownum <= 6)
select *

from points

model

dimension by (id)

measures (id i, x, y, 0 x_cur, 0 y cur, O dist2)

rules iterate (1e6) until i[iteration number+2] is null

(
x_cur[any]
y cur[any] = y[iteration number + 1],

x[iteration number + 1],

dist2[iteration number + 1] =
round(sum(sqrt((x - x_cur) * (x - x_cur) +
(y - y_cur) * (y - y_cur)))[id <= cv(id)], 2)
)
order by id;

As you see, auxiliary measures X_cur and y_cur have to be initialized
for all the rows on all the iterations. To populate (x_cur, y cur) with
values (x, y) for the current row, we use [iteration number + 1]
because row numbering starts with 1 while interation_number starts
with 0. Measure dist2 is calculated only for a single row on each iteration.
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Given that sometimes aggregate and analytic functions are
interchangeable in a model clause, we will discuss this question a bit
further during performance analysis.

Let’s proceed to specific tasks. Listing 7-16 shows how to use the model
to generate recursive sequences discussed in previous chapters.

Listing 7-16. Generation of recursive sequences using model clause

select *

from dual

model

dimension by (0 id)

measures (1 result)

rules

(
result[for id from 1 to 20 increment 1] =
round(1200 * sin(result[cv(id)-1] + cv(id) - 1))

)5

select *
from (select rownum 1lvl, rownum - 1 result
from dual connect by level <= 2)
model
ignore nav
dimension by (1lvl)
measures (result)
rules
(
result[for 1vl from 3 to 15 increment 1] =
result[cv(lvl)-1] + result[cv(1lvl)-2]
);
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The model allows us to use values calculated on previous stages
likewise recursive subquery factoring. The crucial difference from a logical
perspective between the two is that a model applies rules and calculates
values (measures) by columns and not by rows, while recursive subquery
factoring evaluates all the expressions for a current row before processing
the next row. You can find additional details in the quiz “Baskets” in
Chapter 12.

Also, unlike recursive subquery factoring, a model provides an easy
way to reference measures from any other row; thus there is no need to
use an auxiliary column to generate Fibonacci, for example. Visibility for
recursive subquery factoring is limited to the recordset on the previous
iteration.

Even though recursive subquery factoring and a model can be used
to solve the same tasks, these capabilities are completely different and
designed for different purposes so using the same terminology is not quite
appropriate. Speaking about recursive subquery factoring, we can say
“referring value calculated on a previous level” or “referring calculated value
for parent record” while for the model clause, a more correct statement
would be “referring measure value for a previous dimension member.”

Recursive subquery factoring was designed to be able to apply the
same logic multiple times and to work with hierarchical data in particular,
while the model clause was designed for spreadsheet-like computations
and to work with multidimensional data.

Summarizing use cases, it makes sense to use the model in the
following situations:

1. Spreadsheet-like calculations.

Simply speaking, this means calculating cells based on values for other
cells or their ranges.

Trivial expressions can often be rewritten to use other SQL capabilities:
analytic functions and/or additional joins.
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For example, if we have information about monthly sales and want to
calculate a ratio to the first month, we can use the model

with t as

(select rownum id, 100 + rownum - 1 value from dual connect by
level <= 12)

select *

from t

model

dimension by (id)

measures (value, 0 ratio)

rules

(ratio[any] order by id = value[cv(id)]/value[1])

At the same time, it can be easily calculated using analytic functions

select id, value, value / first value(value) over(order by id)
ratio from t

Here is a more synthetic example: calculate the ratio between the
current row value and the value from the row referenced by ref_id.

exec dbms_random.seed(100);
create table t as
select rownum id,
100 + rownum - 1 value,
trunc(dbms_random.value(1, 10 + 1)) ref id
from dual
connect by level <= 10;

Model solution is below:

select *
from t
model
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dimension by (id)
measures (value, ref id, 0 ratio)
rules
(
ratio[any] order by id =
round(value[cv(id)] / value[ref id[cv(id)]], 3)

)5
D VALUE REF_ID RATIO
1 100 6 .952
2 101 7 .953
3 102 7 .962
4 103 8 .963
5 104 3 1.02
6 105 5 .01
7 106 10 .972
8 107 4 1.039
9 108 2 1.069
10 109 1.028

The same can be achieved with self join (or analytic function using
approach from Listing 3-3):

select t1.*, round(ti.value / t2.value, 3) ratio
from t t1
join t t2
on ti.ref id = t2.id
order by t1.id

However, sometimes more complex expressions might require
multiple joins and extensive usage of analytic and aggregate functions as
well as other SQL capabilities, while the same can be done using a model
clause and compact rules.
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It’s worth mentioning that the model has some scalability issues so,
even if the solution is concise and simple, it always makes sense to test it
on real-data volumes and switch to alternative approaches including PL/
SQL if the model does not scale enough.

On the other hand, client applications for spreadsheet-like
calculations, like Excel, are not designed to work with large data volumes.
For example, the max number of rows for Excel 2016 is 1 million, which a
model can easily handle without notable performance degradation, not
to mention that the result can be calculated on the server side without
fetching data to the client.

2. Calculating a complicated result that otherwise
cannot be achieved using pure SQL.

Sometimes Oracle accounts for reporting systems have only select
privileges so that you cannot create a table function and type for its
result. Of course, that can be created in another schema and granted to a
reporting system user, but the model reduces the number of cases when
it's really necessary. Also the model may be a good solution to implement
complex logic for materialized views - even though model calculations can
be expensive this may be unnoticeable for end users.

Quite often people use a model clause when it’s not the best option:

e Generation of sequences where the current value may
be derived based on an initial value - for example, date
ranges. In this case generation would be faster with
connect by.

e Various char data treatment from splitting string into
tokens to calculating expression in a string. To split
strings you can use connect by; for more complex
manipulations it’s better to encapsulate logic in PL/SQL
or even C function.
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» Finding specific sequences in a data - for example,
subsequences of integers without gaps. The better
instrument for this is pattern matching or analytic

functions.

e (Calculation of totals and subtotals. Group by rollup/
grouping sets/cube designed for this purpose.

o Transposing. This is the job for pivot/unpivot operators.

o All other cases when you can avoid using it. ©

Brief Analysis of the Performance

The specific of the model clause is that a full recordset used for modeling
is getting loaded into memory. The number of result columns is fixed and
predefined (equals to partitions + dimensions + measures), but he number
of rows varies and may be more than or less than the number of rows in the
initial recordset as well as equal to it.

To analyze scalability, let’'s measure performance of the different
approaches to generate a recursive sequence with sin function initially
introduced in the chapter about connect by (Chapter 5). The approaches
are PL/SQL function, recursive subquery factoring, and model. You can
find all the code in the corresponding chapters.

For a PL/SQL function, we will calculate the sum of all elements
for an increasing number of rows: 1e5, 2e5, 3e5, 4e5, 5e5, 1e6. The
performance of recursive and non-recursive implementation of function f
is approximately the same so you can use any of them for reproducing.

select sum(value(t)) result from table(f(1e5)) t;
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Similarly, we will measure timings for recursive subquery factoring
and model approaches instead of the PL/SQL function.

Aggregate function was used to get a single row result and avoid
fetching; our primary goal is to generate a sequence though. To complete
the picture, let’s also consider an iterative model that does not generate a
sequence but calculates the sum of the elements.

select cumul

from dual

model

dimension by (0 id)

measures (1 result, 1 cumul)

rules iterate (1e5)

(
result[0] = round(100 * sin(result[0] + iteration number)),
cumul[0] = cumul[0] + result[O]

)5

For all the approaches, most of the time is spent on CPU and execution
statistics are shown in Table 7-1.

Table 7-1. Execution statistics for sequence generation

Number of rows PL/SQL  Recursive with  Model Iterative model
1e5 01.18  02.29 03.22 01.86
2e5 02.43  04.52 12.68 03.35
3e5 03.47 07.58 27.93 05.00
4e5 04.70 10.31 53.45 06.90
5e5 05.82  12.85 01:18.57  08.58
1e6 11.80  27.32 05:01.87  17.00
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Also a lot of PGA memory is consumed during generation; on the other
hand, temporary tablespace was involved only for recursive with (this can
be avoided using manual memory management as will be shown later in
this section - so performance from recursive with may be a bit better).

Memory category (v$process_memory.category) for the model and
recursive subquery factoring is SQL and for PL/SQL function it’s PL/SQL,
which is quite expected. You can drill down and check v$sql_workarea.
operation_type, it will be SPREADSHEET for model clause and CONNECT-
BY (SORT) for recursive with.

v$active_session_history.pga_allocated and v$active_session_history.
temp_space_allocated are good sources to track memory usage growth in
dynamics. If more detailed analysis is required, then you may want to use
v$process_memory_detail performance view.

So as you see, the model demonstrated worse performance and
moreover nonlinear growth of elapsed time depending on the number of
rows. The iterative model looks much better, but strictly speaking it does
not solve the original task - to generate the sequence; it only calculates
the sum of elements. On the other hand, as a rule, the model is used on
top of existing data instead of generating new data, but anyway large data
volumes remain an issue.

Performance and scalability of recursive with for this task was much
better than for the model clause, but the model may be a better approach
for many other tasks. As it was mentioned earlier, recursive with adds a
new recordset on each iteration, but this is not necessary for a model so
if you need to iteratively apply a set of transformations to some recordset
then model may be a much better approach.

Query plans for a model clause to generate a recursive sequence were
trivial - SQL MODEL ORDERED FAST and SQL MODEL ORDERED for iterative and
non-iterative model respectively.

Listing 7-17 shows a query with a model clause that requires some
additional operations because of the analytic/aggregate function in it. Let’s
execute the query with an analytic function for 1e6 and 1.2e6 (20% more)
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number of rows and do the same for the aggregate function. There is no need
for the model in this query at all, and it’s used purely for performance analysis.

Listing 7-17. Analytic/aggregate functions in model clause

select *
from
(select *
from (select rownum id from dual connect by rownum <= 1e6) t
model
dimension by (id)
measures (id value, 0 result)
(
-- analytic version
result[any] = sum(value) over (order by id desc)
-- aggregate version
-- result[any] = sum(value)[id »>= cv(id)]

)
order by id
)
where rownum <= 3;
ID VALUE RESULT
1 1 500000500000

2 500000499999
3 500000499997

Execution time for 1e6 rows was 4 seconds in both cases - this is not
surprising because plans for aggregate and analytic functions are the same.
But elapsed time jumped to 8 seconds when we increased the number of
rows by 20%.
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Listing 7-18. Execution time for model with analytic/aggregate
function

SELECT STATEMENT | |

COUNT STOPKEY | |

VIEW | |
SORT ORDER BY STOPKEY |

SOL MODEL ORDERED | |

VIEW | |

COUNT | |

CONNECT BY WITHOUT FILTERING| |

FAST DUAL | |

WINDOW (IN SOL MODEL) SORT | |

There was not enough memory for the query execution when
we increased the number of rows so Oracle started using temporary
tablespace - this is the reason for nonlinear elapsed time growth. You can
check that by running the query below for the corresponding SQL_ID.

select pga allocated / (1024 * 1024) pga_mb,
temp_space_allocated / (1024 * 1024) temp_mb,
ash.*
from v$active session_history ash
where sql id = '<sql_id>'
order by sample time desc
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Let’s switch to manual memory management and increase memory for
sorting to the max possible value - 2GB.

alter session set workarea size policy = manual;
alter session set sort area size = 2147483647;

Elapsed time after this change is 5 second, which means linear
dependency on the record count. It’s better to let Oracle manage memory
though and use manual memory management only for specific queries
and when there is a strong reason for it.

The last thing to mention is that execution time for 1.2e6 rows without
a model and with default memory settings is just 2 seconds. Let me
reiterate that you should avoid using a model clause when the required
result can be achieved without it.

select *
from (select t.*, sum(id) over(order by id desc) result
from (select rownum id from dual
connect by rownum <= 1.2e6) t
order by id)
where rownum <= 3;

Summarizing observations regarding performance:

e Model clause causes intensive memory usage. There is
always “SPREADSHEET” work area operation, but for
core complex logic there may be “WINDOW (SORT)”
and others.

e Rule evaluation and operating on huge work areas may
require a lot of CPU resources.

o Of course, a query plan with runtime execution
statistics is an invaluable source of information -
it shows which operation was the most resource
consumptive as well as memory usage per operation.
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o Insome cases, the partitioned model and parallel
execution may dramatically improve the performance -
this will be investigated further in the next section.

Model Parallel Execution

To analyze model parallel execution, let’s consider the following task: for
each partition we need to calculate a running sum that drops to zero when
reaches some predefined limit.

Listing 7-19 shows the model query to calculate running for limit 3e3
(3000).

Listing 7-19. Model clause for conditional running sum calculation

create table t (part int, id int, value int);
begin
for i in 1 .. 80 loop
dbms_random.seed(i);
insert into t
select i, rownum id, trunc(dbms_random.value(1, 1000 + 1))

value
from dual
connect by rownum <= 1e5;
end loop;
commit;
end;

/
select --+ parallel(2)
*

from t
model
partition by (part)
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dimension by (id)
measures (value, 0 x, 0 sid)
rules
(
x[any] order by id = case when cv(id)=1 then value[cv(id)]
when x[cv(id)-1] > 3e3 then
value[cv(id)]
else x[cv(id)-1] + value[cv(id)]
end,
sid[any] order by id = userenv('sid")

)

The same logic can be implemented using a parallel pipelined
function. A weak REF CURSOR parameter allows only partitioning by
ANY so we created a strong REF CURSOR to partition by the hash(part).
The column part also specified in order by clause because there is no
guarantee that there will be one partition per slave. Also the table function
requires an SQL collection type for result.

Listing 7-20. Pipelined function for parallel processing

create or replace type to 3int as object (part int, x int, sid int)
/
create or replace type tt 3int as table of to 3int
/
create or replace package pkg as
type refcur t is ref cursor return t%rowtype;
end;
/
create or replace function f _running(p in pkg.refcur_t) return
tt_3int
pipelined
parallel enable(partition p by hash(part)) order p by(part, id) is
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rec pkrowtype;
prev pk%rowtype;
X int := 0;
begin
loop
fetch p
into rec;
exit when p%notfound;
if rec.id = 1 then
X := rec.value;
elsif x > 3e3 then
X := rec.value;
else
X := X + rec.value;
end if;
pipe row(to 3int(rec.part, x, userenv('sid')));
prev := rec;
end loop;
return;
end;
/

Performance testing was done on a server with 80 CPU cores for
granular analysis of parallel execution impact on the performance. The
following query was executed with a different DOP (degree of parallelism)
to measure elapsed time for a PL/SQL approach.

select count(distinct sid) c, sum(x*part) s
from table(f running(cursor(select /*+ parallel(2) */ * from t)));

Similarly, an inline view with a model clause was used instead of a

table operator to test the model approach.
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Table 7-2 represents execution statics for two approaches and a
ratio between elapsed times. As you see, the model clause is faster than
a PL/SQL approach even for serial execution; moreover it leverages
parallel execution more efficiently. For a DOP 20 model runs more than
3 times faster than a PL/SQL function. Increasing DOP to 40 negatively
impacts performance of a PL/SQL because overhead costs to manage
parallel execution stifle the benefit.

Table 7-2. Parallel execution statistics

DOP Actual DOP PL/SQL Model Ratio
Serial 1 01:47.37 53.34 2.01
4 4 36.59 15.83 2.31
10 10 19.78 08.72 2.27
20 19 16.22 05.24 3.1
40 34 18.72 04.35 4.3

It’s important to note that a PL/SQL approach for sequence generation
was better, while for this task the model is faster. This is because we used
a collection of numbers in the first case but a collection of objects in the
second case. Oracle requires additional CPU resources to construct the
object for every single row. Also sequence generation required sin and
round functions, while only primitive operations were used in the logic for
the conditional running sum. The more complex the logic is, the less the
impact of constructing an object for each row.

Another key detail for parallel processing is partitioning. When we specify
partitioning for a model clause, then data for them becomes completely isolated
and rules are evaluated independently for each partition; but in case of a
pipelined function there is no guarantee that there will be a single partition
per slave so we need to keep that in mind when implementing the logic.
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The is one last detail to mention - actual DOP was the same for both
approaches, which is not surprising because DOP was specified in SQL
queries and eventually the SQL engine is responsible for splitting data

across slave sessions.

Summary

Model clause is the most powerful Oracle SQL feature. Theoretically
iterative models allow us to implement an algorithm of any complexity
(see Chapter 10, “Turing Completeness”). On the other hand, the model
clause may cause excessive CPU and memory consumption, and it it’s not
linearly scalable for tasks where some other approaches, including PL/SQL,
demonstrate linear scalability depending on data volumes. However,

it'’s possible to leverage parallel execution for partitioned models, which
makes SQL modeling a perfect instrument for some tasks.

It makes sense to use a model for spreadsheet-like computations,
allowing implementation of complicated rules while avoiding multiple
joins. Also a model may be the right tool for implementing complex logic
when it’s preferable to avoid using a procedural approach, especially if a
model is used in materialized views so the response time is not critical.
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Row Pattern Matching:
match_recognize

The ability to find and analyze the patterns in the data was widely desired
but not possible with SQL until Oracle 12c.

This is required in many business areas, for example, security
applications and fraud detection or financial applications and pricing
analysis. Native pattern-matching capabilities in SQL help to avoid
complex bespoke solutions on the client side or within the middle-tier
application server and use easy-to-share SQL queries instead.

This is the last one of Oracle’s specific SQL features, but before diving
into it, let’s briefly recall the evolution of SQL.

Basic SQL - the one that implements five main operations of relational
algebra - allows only row-level visibility.

Aggregate functions introduce group-level visibility, but a group is
defined by a specific expression that must be the same for all rows in the
group and each row belongs to exactly one group.

Analytic functions allow window-level visibility. The window definition
is the same for all rows; however the windowing_clause adds some
flexibility so that attributes of the current row may be specified as shift

values by range/rows.
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Pattern matching is the next level of flexibility; to match a pattern
across a recordset it’s treated as a sequence of rows - the idea is similar to
regular expressions when an input string is considered as a sequence of
chars. Each row may belong to zero, one, or more matches.

Let’s reuse the table atm from Listing 3-4. We can get all the rows where
the amount equals to 5 using the query below.

select * from atm where amount = 5
The same can be achieved using match_recognize.

select *
from atm
match_recognize
( all rows per match
pattern (five)
define
five as five.amount = 5
) mr
order by ts;

TS AMOUNT
03-JUL-16 5
03-JUL-16 5

Obviously, pattern matching was not designed not for such kind of
tasks and, for example, if there was an index for the amount column,
Oracle would not use it (although the index can be used if you specify the
pattern matching and where clauses together). The query plan looks as
follows (FINITE AUTOMATON was trimmed in the output of dbms_xplan).
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| SELECT STATEMENT
| SORT ORDER BY

| VIEW

| MATCH RECOGNIZE BUFFER DETERMINISTIC FINITE AU
| TABLE ACCESS FULL

Let’s proceed to an example that is a bit more complex.

alter session set NLS DATE_FORMAT = 'mi';

Session altered.

select *
from atm
match_recognize
( order by ts
measures
strt.amount start_amount,
final last(up.amount) end amount,
running count(*) as cnt,
match_number() as match,
classifier() as cls
all rows per match
after match skip past last row
pattern (strt down* up*)
define
down as down.amount < prev(down.amount),
up as up.amount > prev(up.amount)
) mr
order by ts;
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TS START AMOUNT END_AMOUNT CNT MATCH CLS AMOUNT
01 85 100 1 1 STRT 85
03 85 100 2 1 DOWN 15
05 85 100 3 1UP 100
07 40 85 1 2 STRT 40
09 40 85 2 2 DOWN 30
11 40 85 3 2 UP 50
13 40 85 4 2 Up 85
15 60 100 1 3 STRT 60
17 60 100 2 3 DOWN 5
19 60 100 3 3UP 100
21 25 80 1 4 STRT 25
23 25 80 2 4 UP 30
25 25 80 3 4 UP 80
27 5 35 1 5 STRT 5
29 5 35 2 5 UP 35

Here a pattern is defined as one row with label strt, zero, or more
rows with label down and zero or more rows with label up. Actually strt,
down, and up are called pattern variables. A row is marked as down when
an amount is less than in the previous row and correspondingly marked
as up when an amount is greater than in the previous row. If we visualize
the relation between an amount and ts, then each match will be V-shape or
just an ascending or descending part of it if the other one is missing.

all rows per match means every row that is matched is included in
the pattern-match output. If you specify one row per match instead, then
for every pattern match found, there will be one row in the resultset. In the
first case, the way output is generated is similar to analytic functions while
in the second case - it’s similar to the aggregate ones.
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There are two specific built-in measures for pattern matching. match_
number numbers matches starting with one and assigns the same number
for all rows in a specific match. classifier shows which row mapped to
which pattern variable. All the measures except match_number function are
evaluated within the scope of a given match.

Note You can define a union of pattern variables using the subset
keyword to reference them in measures together. For example,
SUBSET STDN = (STRT, DOWN).These groupings also can be
referenced in the define clause to specify definitions of other pattern
variables. See Listing 8-3 for usage example.

Expression running count(*) was used for row numbering within the
matches. final count(*) can be used to show the total row count in the
match. Similarly, the expression final last(up.amount) means that for
all rows in the match we display the last (maximal) value mapped to the up
pattern variable.

after match skip past last row means that whenever a match is
completed, a new search is restarted from the row right after the last row
in the match. This behavior may be changed so that a new search starts
from some row at a completed match; thus rows may belong to more than
one match. New search cannot start from the same row as the previous
one; otherwise Oracle would throw an exception ORA-62517: Next match
starts at the same point the last match started.In the edge case, a
new search can start from the second row of the current match.

The same matched groups and classifiers can be easily calculated
using analytic functions as shown in Listing 8-1.
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Listing 8-1. Implementing pattern matching logic using analytic
functions

select ts,
amount,
count(decode(cls, 'STRT', 1)) over(order by ts) match,
cls
from (select ts,

amount,
case
when lag(cls) over(order by ts) = 'UP' and cls
<> "UP' then
'STRT!
else
cls
end cls
from (select atm.*,
nvl(case

when amount < lag(amount)
over(order by ts) then
"DOWN'
when amount > lag(amount)
over(order by ts) then
P
end,
'STRT') cls
from atm))
order by ts;

If we change a pattern so only complete V-shapes (with ascending and
descending branches) are matched - strt down+ up+, then some rows
will not be part of any matched pattern. If want to see them as part of the
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result, then we can specify either alternative in the pattern: strt down+

up+| dummy+? or use an option with unmatched rows, thatis, all rows

per match with unmatched rows.

select *

from atm

match_recognize

(

)

order by ts
measures

strt.amount start amount,
final last(up.amount) end amount,
running count(*) as cnt,
match_number() as match,

classifier() as cls

all rows per match

after match skip past last row
pattern (strt down+ up+|dummy+?)

define

down as down.amount < prev(down.amount),

up as up.amount > prev(up.amount)

mr

order by ts;

TS START_AMOUNT END_AMOUNT

01
03
05
07
09
11
13
15

100
100
100
85
85
85
85
100

P, B W N P W DN R

w N N NN R

STRT

100
40
30
50
85
60
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17 60 100 2 3 DOWN 5
19 60 100 3 3 UP 100
21 1 4 DUMMY 25
23 1 5 DuMMY 30
25 80 35 1 6 STRT 80
27 80 35 2 6 DOWN 5
29 80 35 3 6 UP 35

I believe there is no need to say that this query can also be rewritten to
use analytic functions instead.
Listing 8-2 shows the query that marks Fibonacci numbers in a sequence.

Listing 8-2. Marking Fibonacci numbers using pattern matching

with t as (select rownum id from dual connect by rownum <= 55)
select * from t
match_recognize
( order by id
all rows per match
pattern ((fib|{-dummy-})+)
define fib as (id = 1 or id = 2 or id = last(fib.id, 1) +
last(fib.id, 2)));

ID
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This query cannot be rewritten with an analytic function because when
we mark a row, we need to consider rows marked so far.

There are a few more interesting details to mention here. Functions
like last in the define clause work in the scope of a matched group. This
means that if we want to access two previous values for a matched variable,
then the whole sequence must be one match. To avoid interrupting the
match, we used an alternative in the pattern. Syntax { - - } means that rows
marked with this label will not be part of the result even though they are
part of the match. Finally, a crucial point is that rows were pre-generated
and pattern matching just helped to mark the required rows. So pattern
matching cannot be used to generate data based on some rules unlike
model or recursive subquery factoring; however it can be used to fill data
gaps, for example.

Let’s say we have a table with intervals and the goal is to add missing ones.
For the data below, the missing intervals are (5, 6), (15, 19), and (26, 29).

with t(s, e) as (

select 1, 4 from dual

union all select 7, 8 from dual
union all select 9, 10 from dual
union all select 11, 14 from dual
union all select 20, 25 from dual
union all select 30, 40 from dual)

Listing 8-3 shows how missing intervals can be added using pattern
matching. The X pattern variable is used to mark consecutive intervals
in the match and Y marks the interval if there is a gap between it and the
previous one. We start searching for the next match from Y so intervals
with the preceding gaps appear in the result twice - marked as Y and as
STRT. For those marked as Y, we use them to calculate the start and end
for missing intervals, and the number of rows marked as Y equals to the
number of missing intervals. To correctly handle the last row we added a
fake interval (1e10, 1e10).

207



CHAPTER 8 ROW PATTERN MATCHING: MATCH_RECOGNIZE

Listing 8-3. Filling data gaps using pattern matching

select mr.*
from (select * from t union all
select 1e10, 1e10 from dual)
match_recognize
( order by s
measures
classifier() cls,
decode(classifier(), 'Y', last(cont.e) + 1, s) strt,
decode(classifier(), 'Y', s - 1, e) end
all rows per match with unmatched rows
after match skip to last y
pattern (strt x* y)
subset cont = (strt, x)
define x as x.s = prev(x.e) + 1
) mr
where s <> 1e10
order by strt, end;

S CLS STRT END E
1 STRT 1 4 4
7Y 5 6 8
7 STRT 7 8 8
9 X 9 10 10
11 X 11 14 14
20 Y 15 19 25
20 STRT 20 25 25
30 Y 26 29 40
30 STRT 30 40 40

9 rows selected.
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It was already mentioned that in some cases the logic for pattern
matching can be re-implemented using analytic functions. Let’s now
compare the performance between two approaches based on a specific
task: find all consecutive combinations of 1, 2, and 3 for table that contains
digits from 0 to 9.

exec dbms_random.seed(1);

create table digit as

select rownum id, trunc(dbms random.value(0, 9 + 1)) value
from dual

connect by rownum <= 2e6;

Listing 8-4 shows a solution using pattern matching. Unlike all
previous examples, we specified one row per match to group three
matched rows for each match into one.

Listing 8-4. Finding combinations of elements (1, 2, 3) using
pattern matching

select decode(v_id, vi_id, 1, v2_id, 2, v3_id, 3) vi,
decode(v_id + 1, v1_id, 1, v2_id, 2, v3_id, 3) v2,
decode(v_id + 2, vi_id, 1, v2_id, 2, v3_id, 3) v3,
count(*) cnt

from digit
match_recognize
( order by id
measures
least(v1.id, v2.id, v3.id) v_id,
(vi.id) vi_id,
(v2.id) v2_id,
(v3.id) v3_id
one row per match
after match skip to next row
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pattern (permute (vi, v2, v3))

define
vl as vi.value = 1,
v2 as v2.value = 2,
v3 as v3.value = 3)

group by decode(v_id, vi_id, 1, v2 id, 2, v3_id, 3),
decode(v_id + 1, v1_id, 1, v2_id, 2, v3_id, 3),
decode(v_id + 2, vi_id, 1, v2_id, 2, v3_id, 3)

order by 1, 2, 3;

Vi V2 V3 CNT

Keywords after match skip to next row were specified in order
to catch all the combinations. For example, there are two overlapping
sequences 1, 3,2 and 3, 2, 1 on the ID interval (709, 719) and the rows with
ID 715 and 716 are part of two different matches.

select * from digit where id between 709 and 719;

ID VALUE
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Keyword permute means that we consider all possible combinations of

v1, v2, v3. To define which permutation was matched we derive matching

IDs and use logic with decode. The number of rows after pattern matching

equals to the number of matched groups and the number of rows after

group by is not more than 6 - the number of permutations of 1, 2, and 3.

Listing 8-5 shows an approach using analytic functions. For each row

we derive two previous rows and check that all of them are unique and
members of the set (1, 2, 3).

Listing 8-5. Finding combinations of elements (1, 2, 3) using

analytic functions

select vi, v2, v3, count(*) cnt

from (select row number() over(order by id) n,

where
and
and
and
and
and
and
group
order

value v3,
lag(value, 1) over(order by id) v2,
lag(value, 2) over(order by id) vi
from digit)
> 2
in (1, 2, 3)
in (1, 2, 3)
in (1, 2, 3)
<> V2
<> v3
<> v3
vl, v2, v3
1, 2, 3;
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By the way, similar logic can be used for pattern matching as well; in
such case we can avoid decode, permute, and grouping.

pattern (vi v2 v3)
define

vl as vi.value = any (1, 2, 3),
any (1, 2, 3)
and v2.value <> vi.value,

v2 as v2.value

v3 as v3.value = any (1, 2, 3)
and v3.value <> v2.value
and v3.value <> vi.value)

Listing 8-6 shows query plans with runtime execution statistics (starts
column always equals to 1 and is manually removed for formatting purposes)

Listing 8-6. Query plans for finding combinations of elements (1, 2, 3)

select * from table(dbms xplan.display cursor(format =>
'IOSTATS LAST'));

| Id | Operation | Name | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | | 6 | 00:00:04.85 | 3712 |
| 1| SORT GROUP BY | | 10 | 6 | 00:00:04.85 | 3712 |
[*2 | VIEW | | 2000K | 11986 | 00:00:04.85 | 3712 |
| 3] WINDOW SORT | | 2000K | 2000K | 00:00:03.91 | 3712 |
| 4| TABLE ACCESS FULL | DIGIT | 2000K | 2000K | 00:00:00.16 | 3712 |
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| Id | Operation | Name | E-Rows | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | | 6 | 00:00:02.74 | 3712
| 1| SORT GROUP BY | | 2000K | 6 | 00:00:02.74 | 3712
| 2| VIEW | | 2000K | 11986 | 00:00:02.73 | 3712
| 3|  MATCH RECOCNIZE SORT | | 2000K | 11986 | 00:00:02.72 | 3712
| 4] TABLE ACCESS FULL | DIGIT | 2000K | 2000K | 00:00:00.16 | 3712

Asyou see, time spent on pattern matching and aggregation in the
first query is less than elapsed time only for analytics in the second query.
Please also note that the Reads column is absent, which means that all
table blocks were in the buffer cache.

Speaking about performance, it’s worth it to mention that, similar to a
model clause, you can leverage the power parallel execution - especially
if data can be partitioned. In the section “Model Parallel Execution,” T
compared model vs. PL/SQL. Let’s complete the picture by adding a
pattern-matching solution.

select --+ parallel(10)

*
from t
model
match_recognize
(
partition by part
order by id
measures

sum(value) x,
userenv('sid') sid
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all rows per match
pattern(x+)
define
x as sum(value) - value <= 3e3
) mr;

It runs about 3 times faster than the model approach with the same
degree of parallelism.

Pattern matching is based on state machines and the pattern itself
defines whether the state machine is

e Deterministic Finite Auto (DFA) - each of the transitions
is uniquely determined by its source state and event;

¢ Nondeterministic Finite Auto (NFA) - next state
depends not only on the current event, but also
possibly on an arbitrary number of subsequent events.

In the first case, an efficient algorithm is used and you will see MATCH
RECOGNIZE SORT DETERMINISTIC FINITE AUTOMATON in the plan while in the
second case, backtracking is required and the plan will contain an operation
MATCH RECOGNIZE SORT. There may be the keyword BUFFER instead of SORT if
arecordset is ordered as required before applying pattern matching.

Listing 8-7 contains a query that generates NFA, because of the
quantifier for pattern variable y. If y was matched 3 times but the test for
z fails, then the state machine walks back and tries to match z again - this
is exactly what is happening during recognition of the second group. If we
specify pattern (x y{3} z) instead, then DFA will be used but there will
be only one match.
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Listing 8-7. Pattern matching with backtracking

with t as (select rownum id from dual connect by rownum <= 10)
select * from t
match_recognize
( order by id
measures
match_number() match,
classifier() cls
all rows per match with unmatched rows
pattern (x y{2, 3} z)
define
z as x.id + z.id <= 15
) mr;

© 0 ~N oUW N R
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10 rows selected.
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Nevertheless, even with all the power, pattern matching currently has
some limitations. In particular

e It’s possible to use only a limited subset of aggregate
functions in the define clause and measures clause.
For example, you cannot use listagg or UDAG. It causes
ORA-62512: This aggregate is not yet supported
in MATCH_RECOGNIZE clause. Additional details
regarding aggregate function in pattern matching can be
found in Chapter 12 in the quiz “Resemblance Group.”

e You can use subqueries in a define clause but they
cannot be correlated. Otherwise the query fails with
ORA-62510: Correlated subqueries are not
allowed in MATCH RECOGNIZE clause.Ibelieve the
reason is to not mix up execution of finite automata
and the SQL engine.

Summary

Row pattern matching significantly extends capabilities of SQL for data
analysis. This feature allows us to perform complex analysis that otherwise
would require analytic and aggregate functions, joins, and subqueries. In
some cases match_recognize is the only way to get a result using SQL in

an efficient and scalable way. Even for cases when pattern matching can
be rewritten using analytic functions, it shows better performance. An
analogy could be drawn with pivot/unpivot operators that can be replaced
with cross join/group by, but new capability performs a bit better than
old-school methods.

Regular expression-like syntax allows defining patterns in a concise
way, which simplifies maintainability and improves readability. Eventually,
pattern matching is a considerable breakthrough in SQL capabilities and
definitely a useful feature.
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Logical Execution
Order of Query Clauses

Oracle allows the combining of various query clauses on the same layer

of a single query, from basic features like joins, filtering, and grouping to
advanced constructions like model clause or pattern matching. Sometimes
it’s not possible to achieve the result using single select ... fromquery
block so you may have to create additional inline views in the query - for
example, when you want to filter by the value of an analytic function.
However, even if you can implement the entire logic using a single query
block - it’s not always necessary, because Oracle can eliminate inline views
during the query transformations. Moreover, in some cases additional
inline views may help to improve the performance as it will be shown in
the end of the chapter.

This chapter covers the execution order of query clauses in a query
block from a logical point of view, which helps to implement complex logic
in a concise way.

Let’s assume we have one single select statement containing only one
select keyword - thus there are no subqueries or inline views. Basically
the execution order is following:

1. from, join, where
2. connect by

3. group by
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4. having
5. analytic functions
6. select-list (distinct, scalar subqueries etc)
7. order by
However this requires a number of clarifications.

1. Specifics of the combination of join, where, and
connect by was covered in Chapter 5, “Hierarchical
queries: Connect by.” In addition, as it was
demonstrated in the section “Pseudocolumn
Generation in Detail,” strictly speaking, it’s not
correct to say that predicates in the where clause
are executed either before or after connect by.

2. Even though, logically post-join predicates are
supposed to be evaluated after pre-join predicates,
in fact they may be applied before if that leads to the
plan with a lower cost.

3. Query transformations may affect the actual
execution order even for a single query block. For
example, distinct may be applied before join if
Distinct Placement transformation takes place -
technically Oracle creates additional inline view.

4. Aninvaluable source of information about the
execution order for a specific query is, of course,
a query plan. It will show when predicates are
applied, when aggregate and analytic functions are
executed, and when various sorts are performed, if

any, and much more.
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All the transformations and optimizations can take place only if
this does not change the result, but what is more important, the actual
execution order may change after CBO transformations - a simple case is
Distinct Placement transformation.

Sometimes developers write a code, making wrong assumptions about
execution order, which may be dangerous. Below are some caveats.

1. You should not build the logic with an assumption
that some filters will be applied before others in
the same query block or rely on a specific plan. The
example below demonstrates how a query may fail if
the query plan changes.

create table to1(id, value, constraint pk_to1 primary
key(id)) as

select 1, '1' from dual union all

select 2, '2' from dual union all

select 0, 'X' from dual;

create table t02(id, value) as
select 1, 1 from dual union all
select 2, 2 from dual;

select

* from t01 join t02 using (id, value);

select *
from table(dbms xplan.display cursor(format =>
'basic predicate'));

select --+ no_index(to01)

* from t01 join t02 using (id, value);

select *
from table(dbms xplan.display cursor(format =>
'basic predicate'));
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In the first case, Oracle does nested loops with an
access by ID and applies a filter by value on top of
ajoined recordset, while in the second case there
is a hash join and the query fails with ORA-01722:
invalid number because of an implicit conversion
when it tries to convert X into a number.

select
* from t01 join t02 using (id, value);

ID VALUE

| Id | Operation | Name |
| 0 | SELECT STATEMENT |

| 1| NESTED LOOPS |

| 2| NESTED LOOPS |

| 3|  TABLE ACCESS FULL | To2

|* 4 |  INDEX UNIQUE SCAN | PK_To1 |
|* 5 | |

TABLE ACCESS BY INDEX ROWID| To1

4 - access("To1"."ID"="T02"."ID")
5 - filter("To2"."VALUE"=TO NUMBER("T01"."VALUE"))

select --+ no_index(to01)
* from t01 join t02 using (id, value);
ERROR:
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ORA-01722: invalid number

| Id | Operation | Name |
| 0 | SELECT STATEMENT | |
|* 1| HASH JOIN | |
| 2| TABLE ACCESS FULL| To2 |
| 3| TABLE ACCESS FULL| To1 |

1 - access("T02"."VALUE"=TO NUMBER("TO1"."VALUE") AND
"TOl"."ID"="T02"."ID")

2. You should not rely on the order of evaluation of
predicates in compound conditions. For example,
in both queries below, predicates were applied in
the same order as they were specified so that the
first query failed and the second one is executed
successfully. Given that id < 3 is false for the third
row, Oracle did not evaluate the second condition.

select id, case when 1 / (id - 3) < 0 and id < 3 then 1 end x
from (select rownum id from dual connect by level <= 3);
ERROR:

ORA-01476: divisor is equal to zero

select id, case when id < 3 and 1 / (id - 3) < 0 then 1 end x
from (select rownum id from dual connect by level <= 3);
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The key point is that there is no guarantee for such
evaluation. For example, both queries below fail,
irrespective of how the predicates are specified.

create table t03 as
select '"A" id from dual union all select '123"' from dual;

Table created.

select * from t03

where id >= 100 and regexp like(id, '\d+');

where id >= 100 and regexp like(id, '\d+')
*

ERROR at line 2:

ORA-01722: invalid number

select * from t03

where regexp like(id, '\d+') and id >= 100;

where regexp like(id, '\d+') and id >= 100
*

ERROR at line 2:

ORA-01722: invalid number

To make sure that some predicates are evaluated
before others, we can use case expressions.
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select * from t03
where case when regexp like(id, '\d+') then id end >= 100;

ID

123

3. There is no guarantee how many times a scalar
subquery or deterministic function will be executed.
Of course, you may want to use various optimization
techniques like scalar subquery caching or reduce
the number of executions for a specific function by
making it deterministic, but you should not ever rely
that there will be a specific number of executions, in
particular a single execution.

Let’s get back to the execution order of query clauses and have a look
at mix of connect by with analytic and aggregate functions.

select
id,
count(*) cnt,
max(level) max 1vl,
max(rownum) max_rn,
sum(id + count(*)) over(order by id) summ
from (select column value id from table(numbers(o, 0, 1)))
group by id
start with id = 0
connect by prior id + 1 = id;

ID CNT MAX_LVL MAX RN SUMM
1 3 2
2 2 4 5
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Initially Oracle built a tree 0, 1, 0, 1 (four rows, two levels) and
generated values for rownum and level pseudocolumns. After that,
the recordset has been grouped, and finally the analytic function was
calculated.

As stated in the list regarding execution order, analytic functions are
executed after group by but before distinct. So using an analytic function
with distinct in a select list is one of the examples when distinct cannot
be replaced with group by without additional inline views.

Let’s create a table and demonstrate a few more examples when group
by cannot be used instead of distinct.

create table tt as
select rownum id, mod(rownum, 2) value
from dual connect by level <= 3;

These two queries are logically identical and produce the same output:

select distinct value from tt
select value from tt group by value

However, in the following cases, group by cannot be used without an
additional inline view, because expressions in the select list are evaluated
after group by.

select distinct row_number() over(partition by id order by
null) rn, value
from tt;

select distinct (select count(*) from tt) cnt, value from tt;
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select distinct sys connect by path(value, '->") path, value
from tt
connect by 1 = 0;

PATH VALUE
->1 1
->0

To check the behavior of distinct and filter by rownum, let’s create
another table:

create table tt1 as
(select trunc(rownum / 2) id from dual connect by level <= 5);

select * from tt1;

Even though the filtering condition was specified to return three rows,
the following query returns only two rows because three rows returned
after a filter is applied and only two of them are unique. Inline view was
used in the from clause to guarantee an order.
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select distinct id
from (select * from tt1 order by id)
where rownum <= 3;

The same can be done using group by without additional inline views
because all expressions for grouping as well as filter conditions can be
evaluated before group by.

select id

from (select * from tt1 order by id)
where rownum <= 3
group by id;

Let’s analyze in more detail a situation when aggregate and analytic
functions are mixed together in the same query block. First query from
Listing 9-1 returns two rows as in the original table, but the second one
returns only a single row because the entire recordset was aggregated
before analytics.

Listing 9-1. Mixing aggregate and analytic functions

select count(*) over() cnt1
from (select column_value id from table(numbers(1, 1)));
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select count(*) over() cnt1, count(*) cnt2
from (select column value id from table(numbers(1, 1)));

CNT2 CNT2

Aggregate and analytic functions can be nested. To understand the
result of Listing 9-2, keep in mind that aggregate functions are evaluated
first and analytics are applied after that.

Listing 9-2. Nesting aggregate and analytic functions

select value,
count(*) agg,
count(*) over() an,
sum(count(*)) over(order by value) agg an
from tt
group by value;

VALUE AGG AN AGG_AN
1 2 1
2 3

Some developers try to avoid inline views with no particular reason;
however in other cases it makes a difference from a performance point of
view. Listing 9-3 shows a query from Listing 9-2 rewritten with an inline
view and a bit simplified query (without analytic count) along with their
versions after transformations and plans.
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Listing 9-3. Inline view instead of nested aggregate and analytic
functions

select t.*, sum(agg) over(order by value) agg an
from (select value, count(*) agg, count(*) over() an
from tt
group by value) t;

select "T"."VALUE" "VALUE",
"T"."AGG" "AGG",
“T"."AN" "AN",
sum("T"."AGG") over(order by "T"."VALUE"
range between unbounded preceding and current row) "AGG_AN"
from (select "TT"."VALUE" "VALUE",
count(*) "AGG",
count(*) over() "AN"
from "TT" "TT"
group by "TT"."VALUE") "T";

SELECT STATEMENT |
WINDOW SORT |
VIEW |
WINDOW BUFFER |
HASH GROUP BY |

select t.*, sum(agg) over(order by value) agg an
from (select value, count(*) agg
from tt
group by value) t;
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select "TT"."VALUE" "VALUE",
count(*) "AGG",
sum(count(*)) over(order by "TT"."VALUE"
range between unbounded preceding and current row) "AGG_AN"
from "TT" "TT"
group by "TT"."VALUE";

| 0 | SELECT STATEMENT
| 1| WINDOW BUFFER

| 2| SORT GROUP BY
| 3|  TABLE ACCESS FULL| TT

As you see, Oracle did not manage to eliminate an inline view for the
first query, but what is more important - plans differ. The plan for the
second query is the same as the plan for the original query with nested
functions; however column “an” is not calculated. On the other hand, the
first query returns the identical result as the original one, but as we see
from the plan there are two WINDOW operations and a top-level function
requires its own sort. This means that in this case you may want to use
nested functions for performance reasons. Technically, a complex view
merging transformation was applied for the second query but could not be
applied for the first one.

Aggregate functions also can be nested. As you may remember it’s
not possible to use a distinct keyword in listagg function, but if result is
supposed to be a single row, then nested aggregates can help to remove
duplicates from concatenation as shown in Listing 9-4.
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Listing 9-4. Nested aggregate functions

select listagg(id, ',') within group(order by id) list
from (select column value id, rownum rn

from table(numbers(1, 2, 3, 5, 2)));

112)2)3’5

select listagg(max(id), ',') within group(order by max(id)) list
from (select column value id, rownum rn
from table(numbers (1, 2, 3, 5, 2)))
group by id;

1,2,3,5

To perform aggregation by id before concatenation it's enough to
specify aggregate function max just in one place.

listagg(id, ',") within group(order by max(id)) list
listagg(max(id), ',"') within group(order by id) list

When aggregate functions are nested, then the result is always a single
row and only one level deep nesting makes sense and is allowed.

This capability may be quite useful if we want to concatenate unique
values in a correlated scalar subquery. Listing 9-5 demonstrates a couple
of approaches but the second one works only in 12c while on 11g it fails
with ORA-00904: "T1"."ID": invalid identifier because correlation
names scoped only to one level deep.
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Listing 9-5. Concatenating unique values in correlated scalar subquery

select t1.*,

(select listagg(max(t2.name), ', ') within group(order

by t2.name)
from t2

where t1.id = t2.id
group by t2.name) x1,

(select listagg(t2.name, ', ') within group(order by t2.name)
from (select distinct name from t2 where ti.id =
t2.id) t2) x2

from t1;

As was mentioned in the beginning of the chapter, sometimes an inline
view may be mandatory, for example, if you want to use the result of the
analytic function in a where clause. In other cases it may be optional as
was shown in a query with mixed analytic and aggregate functions. In such
situations it’s up to you to decide whether to use an inline view and make
a query easier to read or get rid of it to make it more concise and avoid
unnecessary layers.

It’s not possible to figure out in a general case whether a query
contains (mergeable) inline views or not based on the plan. As was
demonstrated, getting rid of an inline view can change the plan and have a
positive impact on the performance; however additional inline views also
may lead to improved performance.

Let’s create a function with an execution time close to one second to
demonstrate such a case.

create or replace function f return number is
begin
dbms_lock.sleep(1);
return 1;
end f;
/
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The first query from Listing 9-6 takes 6 seconds because functions are
evaluated twice for each row. The second query takes 2 seconds because of
scalar subquery caching - the function is evaluated twice for the first row
and the result is cached. Finally, the third query takes only a second because
we can reuse the cached scalar from the inline view in both expressions.

Listing 9-6. Improving performance with inline views and scalar
subquery caching

select id, value, f + 1 f1, ¥ - 1 f2 from tt t;

ID VALUE F1 F2
1 1 0
2 0
3 2 0

Elapsed: 00:00:06.04
select id, value, (select f from dual) + 1 f1, (select f from
dual) - 1 2

from tt t;
ID VALUE F1 F2
1 2 0
2 0
3 1 2 0

Elapsed: 00:00:02.02
select id, value, ff + 1 f1, ff - 1 f2
from (select tt.*, (select f from dual) ff from tt) t;
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ID VALUE F1 F2
1 2 0

2 0

3 1 2 0

Elapsed: 00:00:01.02

Even specific Oracle clauses like pattern matching or model may be
combined in the same query block.

select * from dual
match _recognize (all rows per match pattern (x) define x as 1 = 1)
model dimension by (1 id) measures (0 result) rules ();

In this case match_recognize will be applied first and the model will
be executed on top of it; furthermore each clause is isolated to another so
if you want to treat a recordset in a specific way before applying the logic,
you may have to specify partitioning and ordering for each clause.

Summary

Some details regarding logical execution of query clauses, along with

the examples, have been examined. When logic is quite complicated it
makes sense to use multiple query blocks even if that is not necessary - for
maintainability purposes. However you have to make sure that inline views
are merged as expected so there is no negative impact on the performance.
It’s not always possible to avoid inline views - for example, when filtering
by result of an analytic function is required. Moreover, in some cases

inline views may improve the performance as was demonstrated in the
end of the chapter. Also inline views may be useful as workarounds for
bugs (for example, there were a lot of bugs on old versions when connect
by and analytic functions have been mixed in the same query block) and
to control transformations - you can disable view merging and control
transformations in each subgeury separately.

233



CHAPTER 10

Turing Completeness

Turing completeness is a very important notion in computer science
because being Turing complete means that your model of computations
can execute any algorithm no matter how complex it’s, what data
structures are used, and how much storage or time would be needed to
evaluate it. SQL can be considered as yet another example of a model of
computations and even though it’s not supposed to be used to implement
any algorithm or business logic, it’s interesting to analyze whether it’s
Turing complete or not for the sake of completeness. Moreover, as will
be shown in the next chapter “When PL/SQL Is Better Than Vanilla
SQL,” sometimes pure SQL is not the best way to get the result even if an
algorithm can be easily implemented using it.

In computation theory, a system of data-manipulation rules (or model
of computations) is said to be Turing complete if it can be used to simulate
any Turing machine. The examples of such systems are the following:
processor’s instruction set, a programming language, a cellular automaton,
or even an ultimate reduced instruction set computer (URISC). On the
other hand, some widely known models of computations are not Turing
complete - for instance, deterministic finite automaton (DFA).

According to the Church-Turing thesis, “All physically computable
functions are Turing-computable,” or in other words, if some model of
computations can simulate a Turing machine then it can implement any
computable function.
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One of the easiest ways to prove whether language is Turing complete
is to implement an elementary cellular automaton called Rule 110, which
is Turing complete - proof can be found in note [7] in the Appendix.

In an elementary cellular automaton, a one-dimensional pattern of 0s
and 1s evolves according to a simple set of rules. Whether a point in the
pattern will be 0 or 1 in the new generation depends on its current value,
as well as on those of its two neighbors as described in Table 10-1. The left
neighbor for the first symbol is the last symbol in the tape and the right
neighbor for the last symbol is the first symbol.

Table 10-1. The set of rules for Rule 110 automaton

Current pattern 111 110 101 100 011 010 001 000
New start for the center cell 0 1 1 0 1 1 1 0

Rule 110 is called like that because if a binary sequence for new states
01101110 interpreted as a binary number corresponds to the decimal
value 110.

Listing 10-1 shows the example of an evaluation for the first 19 steps of
Rule 110 for the initial tape 000000000010000000000000010000.

Listing 10-1. Example of evaluation for Rule 110

1 000000000010000000000000010000
2 000000000110000000000000110000
3 000000001110000000000001110000
4 000000011010000000000011010000
5 000000111110000000000111110000
6 000001100010000000001100010000
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000011100110000000011100110000

8 000110101110000000110101110000
9 001111111010000001111111010000

10
11
12
13
14
15
16
17
18
19
20

011000001110000011000001110000
111000011010000111000011010000
101000111110001101000111110001
111001100010011111001100010011
001011100110110001011100110110
011110101111110011110101111110
110011111000010110011111000010
110110001000111110110001000111
011110011001100011110011001100
110010111011100110010111011100
110111101110101110111101110101

Listing 10-2 shows how Rule 110 can be implemented using recursive

subquery factoring and analytic functions. In a nutshell, the tape is
transformed into a recordset where one row is one symbol and analytic

functions are used to derive neighbors for each value, after symbols for the

required steps are generated, they getting concatenated into strings.

Listing 10-2. Implementation of Rule 110 using recursive subquery

factoring

with to as

(select '000000000010000000000000010000" str from dual),

t1 as

(select 1 part, rownum rn, substr(str, rownum, 1) x

from to

connect by substr(str, rownum, 1) is not null),

t2(part, rn
(select pa
from t1

, X) as
rt, rn, cast(x as char(1))
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union all
select part + 1,
rn,
case nvl(lag(x) over(order by rn),
last value(x) over(order by rn rows
between current row and unbounded following))
x|
nvl(lead(x) over(order by rn),
first value(x) over(order by rn rows
between unbounded preceding and current row))
when '111' then '0'
when '110' then '1
when '101' then '1
when '100' then '0'
when '011' then '1
when '010' then '1
when '001' then '1
else '0'
end
from t2
where part < 20)
select part, listagg(x) within group(order by rn) str
from t2
group by part
order by 1;

Without analytic functions it’s not possible to derive values for
neighbors because a recursive query name must be referenced only once
in a recursive branch, so self joins of subqueries with a recursive query
name are not allowed. Therefore I do not think that SQL is Turing complete
without support of analytic functions in a recursive branch; however this
has to be proven.
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After it’s proven that cellular automaton can be used to implement any
algorithm, one may ask “how to actually use it for that? For example, to
implement a very simple routine that sums up two numbers.” In order to
do that, pattern of 0s and 1s must be treated as data and code so the tape
has to be constructed in a specific manner. In other words, the algorithm
has to be coded in input tape - notin SQL.

The last thing to mention about Rule 110 is that it can be implemented
relatively simply for a tape of arbitrary length using a model clause even
without iterations. Such imitations using SQL are quite slow and can be
used only for academic purposes though.

A model clause has yet another interesting feature from an academic
point of view - it can be used to implement any algorithm if you get rid of
nested loops, which is theoretically always possible. To demonstrate this
let’s have a look at a bubble sort algorithm shown in Listing 10-3.

Listing 10-3. Bubble sort for string of symbols

declare

s varchar2(4000) := 'abcd c*de 01';
length(s);
j number := 1;

n number :
J
k number :=
X

1
number := 1;
i number := 1
begin
while x > 0 loop
X 1= 0;
for jin 1 .. n - k loop

)

i:=1+1;
if substr(s, j + 1, 1) < substr(s, j, 1) then
s := substr(s, 1, j - 1) || substr(s, j + 1, 1) ||
substr(s, j, 1) || substr(s, j + 2);
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X 1= 1;
end if;
end loop;
k := k + 1;
end loop;
dbms_output.put line(i || s);
end;

We repeat nested loops until there is at least one swap on the current
iteration of the while loop, which is flagged in an x variable.

After conversion to a single while loop in Listing 10-4, we introduced
an additional flag - c. This flag is an analogue to x from Listing 10-3 while
x itself always equals to 1 and may reset to zero only when an “inner loop”
is completed so algorithms can terminate only if we processed all the
symbols on the current step and there were no swaps (i.e.,, ¢ = 0).

Listing 10-4. Bubble sort using single while loop

declare
s varchar2(4000) := 'abcd c*de 01';

n number := length(s);
j number := 1;
k number := 1;
X number := 1;
i number := 1;
c number := 0;
begin
while x > 0 loop
i=1+1;
c := case when substr(s, j + 1, 1) < substr(s, j, 1)
then 1
else case when j = 1 then 0 else c end
end;
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s := case when substr(s, j + 1, 1) < substr(s, j, 1)
then substr(s, 1, j - 1) || substr(s, j + 1, 1) ||
substr(s, j, 1) || substr(s, j + 2)
else s
end;
X := case when j =n - k and c = 0 then 0 else 1 end;
k := case when j = n - k then k + 1 else k end;
j := case when j - 1 = n - k then 1 else j + 1 end;
end loop;

dbms_output.put_line(i || s);

end;

To implement this logic using a model clause we have to

Declare necessary variables (columns);

u,_n u_n,

Replace assignment operators “:=” with equality signs “=";

Replace semicolon, which separates statements with a
comma, to separate rules in the model;

Add [0] for addressing - logic is applied to a single
string that is identified with rn = 0.

Listing 10-5 shows an SQL approach. In all three cases the result is the

same and 64 iterations have been performed to get it.

Listing 10-5. Bubble sort using model clause

with t as (select 'abcd c*de 01' s from dual)
select i, s

from t
model

dimension by (0 rn)
measures (length(s) n, 1 j, 1k, 1 x, 11, 0¢, s)
rules iterate(60) until x[0]=0
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(

i[o] = i[o0] + 1,

c[o] = case when substr(s[0], j[o] + 1, 1) < substr(s[o0], j[o], 1)
then 1
else case when j[0] = 1 then 0 else c[0] end

end,

s[0] = case when substr(s[0], j[0] + 1, 1) < substr(s[o], j[o], 1)
then substr(s[o0], 1, j[o] - 1) || substr(s[0],
jlo] +1, 1) []

substr(s[o], j[o], 1) || substr(s[o], j[oO] + 2)
else s[0]
end,

x[0] = case when j[0] = n[0] - k[0] and c[0] = O then 0 else 1 end,

k[0] = case when j[0] = n[0] - k[0] then k[0] + 1 else k[O] end,

j[0] = case when j[0] - 1 = n[0] - k[0] then 1 else j[0] + 1 end

)5

IS

64  *0labccdde
Summary

It has been shown that recursive subquery factoring makes SQL Turing
complete. Moreover it was demonstrated how an iterative model can be
used to implement an arbitrary algorithm. Nevertheless with all the power,
SQL is not a language for iterative computations. Also as was shown in

the subsection “Brief Analysis of the Performance” in Chapter 7 about

the model clause, even for trivial algorithms PL/SQL may be faster than
recursive subquery factoring or model clauses. Additional details when
PL/SQL is a more preferable approach than SQL can be found in the next
chapter - “When PL/SQL Is Better Than Vanilla SQL”
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PL/SQL and
SQL solutions

The list of tasks and demonstrated solutions in Chapter 12 correspond to
the following Oracle features:

# Quiz CB AF RW M PM PL
1 Converting into decimal + +
2 Connected components + +
3 Ordering dependencies + +
4 Percentile with shift +

5 N consequent 1s + + +

6 Next value + + +

7 Next branch + + +

8 Random subset + + +
9 Covering ranges + + +

10 Zeckendorf representation + + + +

11 Top paths + +

12 Resemblance group + +

13 Baskets + +

14 Longest increasing subsequence + +

15 Quine
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Legend

AF: analytic functions
CB: connect by

RW: recursive with

M: model

PM: pattern matching
PL: PL/SQL
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When PL/SQL Is Better
Than Vanilla SQL

It was already mentioned a few times that for many tasks, instead of

using advanced Oracle features like a model clause or recursive subquery
factoring, you can implement the logic in PL/SQL with better performance
and scalability. However PL/SQL may be a better choice to get a recordset
even if the challenge can be addressed with basic SQL features only. As
arule, the reason is because of limitations or current implementation

of SQL or specifics of SQL queries. SQL is declarative language and

its implementation in Oracle RDBMS is not open source; thus what is
happening under the hood can be controlled only to some extent. Below is
an attempt to categorize cases when PL/SQL solution is better than vanilla
SQL; please keep in mind that this categorization is quite relative and
some cases may fall into multiple categories.
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Specifics of Analytic Functions

Analytic functions are extremely powerful features and they significantly
extend a set of tasks that can be efficiently solved using pure SQL. On the
other hand, analytic functions have some functional limitations as was
shown in the corresponding chapter (Chapter 3) as well as some specifics
in implementation that may be a reason for not achieving the optimal
performance.

Fetch Termination

The core of the first problem in this subsection is the inability to efficiently
specify in a query that rows should be fetched until some condition is false.
Analytic functions are just a feature that helps to achieve this with pure
SQL, but not always in an efficient way.

Let’s consider a case when it’s required to terminate fetching or stop
returning the rows based on some condition. Listing 11-1 shows a table
with information about transactions, and the goal is to return all the latest
transactions unless the total reaches limit X (or unless N specific rows are
returned).

At least three different approaches may be proposed right off the bat:

e Using analytic functions;
o Implementing logic in table (pipelined) function;

o Fetch data and validate termination condition on
client side.
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Listing 11-1. Transaction table

exec dbms_random.seed(1);
create table transaction(id int not null, value number not null);
insert --+ append
into transaction
select rownum, trunc(1000 * dbms _random.value + 1) value

from dual
connect by rownum <= 3e6;
create index idx_tran_id on transaction(id);
exec dbms_stats.gather table stats(user, 'transaction');

Tests are performed on Oracle 12.1.0.2 with

1) Enabled runtime execution statistics.

alter session set statistics_level = all;

2) Disabled adaptive plans.

alter session set " optimizer adaptive
plans" = false;

Plans were displayed using command

select *
from table(dbms xplan.display cursor(format => 'IOSTATS LAST'));

IOSTATS was used instead of ALLSTATS mainly due to formatting
purposes - so that plans can fit the page width. Statistics about memory
usage can be displayed by using MEMSTATS or ALLSTATS.
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First of all let’s consider a bit simplified task when we need to return
just 10 of the latest transactions. The first approach is an inline view with
order by and filter by rownum. See Listing 11-2.

Listing 11-2. Limiting rows with rownum

select *
from (select * from transaction order by id desc)
where rownum <= 10;

ID VALUE
3000000 875
2999999 890
2999998 266
2999997 337
2999996 570
2999995 889
2999994 425
2999993 64
2999992 140
2999991 638

10 rows selected.

Query returns the result almost immediately - less than in a centisecond.
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This is achieved by reading the index in descending order and
accessing the table by rowid to get the value, but the crucial point is that
reading stops after getting 10 rows.

Let’s now implement the logic using analytic functions. See Listing 11-3.

Listing 11-3. Limiting rows with row_number

select t1.id, ti1.value
from (select row number() over(order by id desc) rn, to.*
from transaction to) t1
where rn <= 10;
Even though the Reads column is missing in the plan, which means that
all data was read from memory and not from disk - Buffers, it took more than
2 seconds to execute (which is multiple times longer than the first approach).
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WINDOW SORT PUSHED RANK operation means that ordering is
performed until a specified number of rows is returned, but input data for
this operation is all the rows from the table. In other words, this means
that the full table is scanned but order is guaranteed only for a specified
number of rows.

When using analytic functions we also can take advantage of the
fact that data in an index is ordered, but in this case we have to use an
additional join as shown in Listing 11-4.

Listing 11-4. Limiting rows with row_number - optimized version

select t2.*
from (select --+ cardinality(10) index desc(to idx tran id)
row_number() over(order by id desc) rn, rowid row id
from transaction to) t1
join transaction t2
on ti.row_id = t2.rowid
where ti.rn <= 10;

We explicitly specified an access method in the inline view to avoid a
full scan and hinted at low cardinality so that Oracle does nested loops.
Execution time is less than a centisecond - similar to the approach with
filter by rownum. An additional join acts as TABLE ACCESS BY USER ROWID
instead of TABLE ACCESS BY INDEX ROWID as in the first approach.
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You may note that operation WINDOW NOSORT STOPKEY became
WINDOW NOSORT, which means that the index was fully scanned. So if a
limit is calculated using a subquery, then you may want to split the query
into two and use a bind variable for the limit.

Let’s proceed to the original task: we need to fetch the latest rows until
the total amount reaches the limit; let it be 5000.

Obviously, filter by rownum cannot be used in this case. Listing 11-5
shows an analytic approach to limit rows by a cumulative sum.

Listing 11-5. Limiting rows with sum

select t1.id, ti.value
from (select sum(value) over(order by id desc) s, to.*
from transaction to) t1
where s <= 5000;

ID VALUE
3000000 875
2999999 890
2999998 266
2999997 337
2999996 570
2999995 889
2999994 425
2999993 64
2999992 140

9 rows selected.

You can see in the execution plan that elapsed time is much longer
than for the original query with row_number from Listing 11-3. This is
because all rows have been ordered even though we need only 9 rows in
the result.
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After this change there is enough memory to perform a sort, and the
execution time significantly dropped, but there is no need to order all the
rows from the table anyway.

With an assumption that there is continuous numbering for ID (which
happens extremely rarely for real data), we can use the next approach with
recursive subquery factoring.

Listing 11-6. Limiting rows with recursive subquery factoring - for
continuous numbering

with rec(id, value, s) as
(
select id, value, value
from transaction
where id = (select max(id) from transaction)
union all
select t.id, t.value, rec.s + t.value
from transaction t
join rec on rec.id - 1 = t.id
where rec.s + t.value <= 5000
)
select * from rec;
Execution time again dropped to 1 centisecond.
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For Oracle 12c it’s easy to handle gaps in ID numbering (for older
versions, you can use methods described in the subsection “Correlated
Inline Views and Subqueries” in the first chapter) as shown in Listing 11-7.

Listing 11-7. Limiting rows with recursive subquery factoring -
generic case

with rec(id, value, s) as
(
select id, value, value
from transaction
where id = (select max(id) from transaction)
union all
select t.id, t.value, rec.s + t.value
from rec
cross apply (select max(id) id from transaction where id <
rec.id) to
join transaction t on t0.id = t.id
where rec.s + t.value <= 5000
)
cycle id set c to 1 default 0
select * from rec;
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You may note the cycle clause in the query. Even though cycle mark is
zero for all the rows, without a cycle clause, the query fails with «ORA-32044:
cycle detected while executing recursive WITH query».This is not
quite correct behavior and it will be discussed later on in the current chapter.

Well, recursive subquery factoring helps to get a result in quite an
efficient way on the last versions, but what if we need to implement more
complex logic than the limit for the cumulative sum or we use the old
version that does not support recursive subquery factoring. Listing 11-8
shows how logic can be encapsulated in a PL/SQL function as well as create
statements for required types.

Listing 11-8. Types and function for limiting rows

create or replace type to_id value as object(id int, value
number)

/

create or replace type tt _id value as table of to_id value
/

create or replace function f transaction(p limit in number)
return tt_id value
pipelined is
1 limit number := 0;
begin
for i in (select --+ index desc(transaction idx tran id)
*
from transaction
order by id desc) loop
1 limit := 1 limit + i.value;
if 1_limit <= 5000 then
pipe row(to id value(i.id, i.value));
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else
exit;
end if;
end loop;
end f transaction;
/

The average execution time is a two hundredth of a second.

Listing 11-9. Limiting rows with PL/SQL function

select * from table(f transaction(p_limit => 5000));

ID VALUE
3000000 875
2999999 890
2999998 266
2999997 337
2999996 570
2999995 889
2999994 425
2999993 64
2999992 140

9 rows selected.
Elapsed: 00:00:00.02

Let’s add a unique combination of symbols into hint «--+ index
desc(transaction idx tran id) zzz» and recompile the function so that
we can easily find details for the required statement in v$sql. After a couple
of executions, the stats are the following.
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column sql_text format as0

select executions, rows processed, sql text
from v$sql v

where sql text like '%index desc(transaction idx tran_id) zzz%'
and sql text not like '%v$sql%’;

EXECUTIONS ROWS_PROCESSED SQL_TEXT
2 20 SELECT --+ index desc(transaction
idx_tran id) zzz
* FROM TRANSACTION ORDER BY ID DESC

Even though there is no filter in a query, only 20 rows have been
processed (fetched), which means 10 rows per execution as expected.

A similar approach can be implemented in a client application, but the
ability to encapsulate the logic into a PL/SQL function is quite important.

The last thing to note regarding queries with limits is that the so-called
Top-N Queries have been introduced in Oracle 12c. No fundamental changes
have been made in the SQL engine for this functionality, and if you have
alook at the final query after transformation for Ton-N syntax, you will
see analytic functions. So in a nutshell Top-N is just syntactic sugar and
avoiding it makes it possible to write more efficient queries in many cases - in
particular, you can apply an optimization technique as shown in Listing 11-4.
I suppose this functionality was introduced due to following reasons:

e Marketing reasons. Other RDBMSs have this feature
and now it’s in Oracle as well;

o Simplifying migration from other RDBMSs;

o Simplicity to write ad hoc queries for non-expert
database developers;

Using this feature for complex performance-critical
queries is not reasonable.
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Avoiding Multiple Sorts

The second use case regarding analytic functions will be about ordering
that is caused by analytics. Listing 11-10 shows a fact table with low
cardinality dimensions.

Listing 11-10. Fact table with low cardinality dimensions

exec dbms_random.seed(1);

create table fact a as

select date '2010-01-01' + level / (60 * 24) dt,
trunc(3 * dbms_random.value()) dim 1 id,
trunc(3 * dbms_random.value()) dim 2 id,
trunc(1000 * dbms_random.value()) value

from dual
connect by level <= 3e6;
exec dbms_stats.gather table stats(user, 'fact a');

The goal is to calculate a cumulative sum by each dimension and their
combination - dim_1_id, dim_2_id with ordering by date.

select dt,
dim_1_id,
dim 2 id,
value,
sum(val) over(partition by dim 1 _id order by dt) dimi_sum,
sum(val) over(partition by dim 2 id order by dt) dim2_sum,
sum(val) over(partition by dim 1 id, dim 2 id order by dt)
dimi_dim2_sum

from fact_ a
order by dt
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To minimize fetch let’s use the following query, which returns only a
single row.

select to char(sum(dimi_sum), lpad('9', 20, '9")) di,
to_char(sum(dim2_sum), lpad('9', 20, '9')) d2,
to_char(sum(dimi_dim2_sum), lpad('9', 20, '9')) d12

from (select dt,

dim 1 id,
dim 2 _id,
value,
sum(value) over(partition by dim 1 id order by
dt) diml_sum,
sum(value) over(partition by dim 2_id order by
dt) dim2_sum,
sum(value) over(partition by dim 1 id, dim 2 id
order by dt)
dim1_dim2_sum

from fact a

order by dt);

749461709848354 749461230723892 249821726573778

There are three sorts in the query plan even though ordering always by
dt. This is because the expression for partitioning differs.
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Total execution time is approximately 1 minute and 20 seconds and as
we see in columns Reads/Writes, all three sorts cause reads/writes from
temporary tablespace. Let’s set the maximum possible memory for sort
and re-run the query.

alter session set workarea size policy = manual;
alter session set sort area size = 2147483647;

The elapsed time dropped four times and all the sorts have been
performed in memory.
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Taking into account the specifics of analytic widows in this query, we
can implement the required logic using PL/SQL associative arrays and a
cursor with a single order by. Listing 11-11 shows this approach and the
required types.

Listing 11-11. Avoiding multiple sort operations

create or replace function f fact a return tt fact a
pipelined is
type tt1 is table of number index by pls integer;
type tt2 is table of tt1 index by pls_integer;
1 dim1 tta;
1 dim2 tta;
1 dim12 tt2;
begin
for r in (select /*+ Ivl 0 */
dt, dim_1_id, dim_2_id, value
from fact_ a
order by dt) loop
-- Noformat Start
1 dimi(r.dim 1 id) :

case
when 1 dimi.exists(r.dim 1 _id)
then 1_dimi(r.dim 1 _id)
else 0

end + r.value;

1 dim2(r.dim 2 id) := case
when 1 dim2.exists(r.dim 2 id)
then 1 dim2(r.dim 2 id)
else 0

end + r.value;
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1 dim12(r.dim 1 _id)(r.dim 2_id) :=
case
when 1 dimi2.exists(r.dim 1 _id)
and 1 _dim12(r.dim_1_id).exists(r.dim_2_id)
then 1 dim12(r.dim 1 _id)(r.dim 2_id)
else 0
end + r.value;
-- NoFormat End
pipe row(to fact a(r.dt,
r.dim_1_id,
r.dim 2 id,
r.value,
1 dimi(r.dim 1 _id),
1 dim2(r.dim 2 _id),
1 dim12(r.dim 1 id) (r.dim 2 id)));

end loop;

end;

/

create or replace type to fact a as object

(
dt date,
dim 1 id number,
dim 2 id number,
value number,
diml_sum number,
dim2_sum number,
dim1_dim2_sum number

)

/

create or replace type tt fact _a as table of to fact a
/
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Let’s compile a function with disabled PL/SQL optimization.

alter session set plsql optimize level = 0;

alter function f_fact_a compile;

set timing on

select to char(sum(dim1_sum), lpad('9', 20, '9")) d1,
to_char(sum(dim2_sum), lpad('9', 20, '9')) d2,
to _char(sum(dimi_dim2_sum), lpad('9', 20, '9')) d12

from table(f fact a)
order by dt;

The average execution time is around 45 seconds, which is worse than
an SQL approach.

Let’s now change the parameter value «plsql _optimize level»to 2
(this is default value) and compile the function after replacing «/*+ Ivl 0
*/» with «/*+ 1vl 2 */»inthe code.

The average execution time became 12-14 seconds, which is better
than the SQL approach.

The reason for such a significant improvement is that the fetch size
for the default optimization level is 100 rows. You can easily check that in

v$sql view.

select regexp substr(sql text, '/.*/") hint,
executions,
fetches,
rows_processed
from v$sql s
where sql text like '%FROM FACT A%’
and sql _text not like '%v$sql%’;

HINT EXECUTIONS FETCHES ROWS_PROCESSED
/*+ 1vl 0 */ 2 6000002 6000000
/*+ 1vl 2 */ 2 60002 6000000
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So the PL/SQL approach is approximately 35% faster for this task, but
for a larger number of cumulative sums the difference would be more
substantial, and more importantly, it’s possible to increase the fetch size,
which would make the PL/SQL approach several times faster. Additional
information about that can be found in “Doing SQL from PL/SQL: Best
and Worst Practices” [9].

Iterative-Like Computations

Oracle provides at least two ways to perform iterative-like computations in
SQL on top of recordset: iterative model and recursive subquery factoring.
The source data for an iterative model is a single recordset and you cannot
use any additional data structures like list or stack; and, secondly, there
may be only one loop counter (for academic interest implementation

of bubble sort using iterative model was shown in Chapter 10, "Turing
Completeness”). The specifics of recursive subquery factoring are that

on each iteration you can use data only from the previous iteration even
though the result set contains data from all the iterations. Briefly speaking,
the field of application for these features is quite limited, not to mention
issues with scalability and intensive memory and CPU usage.

You can find in the next chapter some solutions with iterative models
or recursive subquery factoring and their comparison with PL/SQL
approaches. In this chapter, however, we will consider a couple of tasks
that can be solved in pure SQL without those advanced features and their
alternatives in PL/SQL.
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When There Is No Effective Built-In Access
Method

Let’s assume the goal is to return distinct values for a not nullable column
with low cardinality.

create table t str(str varchar2(30) not null, padding
varchar2(240));

insert into t str

select "AAA', lpad('x', 240, 'x') from dual

union all

select 'BBB', lpad('x', 240, 'x') from dual

union all

select lpad('C', 30, 'C'), lpad('x"', 240, 'x') from dual
connect by rownum <= 3e6

union all

select 'DDD', lpad('x', 240, 'x') from dual;

create index t_str idx on t str(str);

exec dbms_stats.gather table stats(user,'t str');

Of course, a trivial solution is using a distinct keyword.
select distinct str from t_str;

STR

AAA
cccccecececececcecceccccceccccceccce
DDD
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Execution time is more than 1 second and it required almost 18k
logical reads.

Listing 11-12 shows how recursive subquery factoring can be used for
getting a list of distinct values for a column.

Listing 11-12. Using recursive subquery factoring to get distinct
values for a column

with rec(lvl, str) as
(
select 1, min(str) from t_str
union all
select 1vl + 1, (select min(str) from t str where str > rec.str)
from rec
where str is not null

)

select * from rec where str is not null;
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The execution time dropped more than 100 times and the number
for logical reads reduced more than 1000 times. This was achieved by
performing a few “INDEX RANGE SCAN (MIN/MAX)” operations instead of
“INDEX FAST FULL SCAN”

Listing 11-13 shows how similar logic can be implemented using PL/
SQL function for old Oracle versions.

Listing 11-13. PL/SQL function to get distinct values for a column

create or replace function f str return strings
pipelined is
1 min t_str.str¥%type;
begin
select min(str) into 1 min from t_str;
pipe row(1l min);
while true loop
select min(str) into 1 min from t str where str > 1 min;
if 1 min is not null then
pipe row(1l min);
else
return;
end if;
end loop;
end f_str;
/

Let’s analyze performance using a dbms_hprof package:
exec dbms_hprof.start profiling('UDUMP', '1.trc');

PL/SOL procedure successfully completed.
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select column value str from table(f str);
STR

BBB
cceeeeecccccccccccccccccceccccc
DDD
exec dbms_hprof.stop profiling;

PL/SOL procedure successfully completed.

select dbms_hprof.analyze('UDUMP', '1.trc') runid from dual;

Listing 11-13 shows profiling results. As you see, the query on the 5th line
was executed once and the query from the 8th line was executed 4 times, and
the total elapsed time is 931 microseconds or approximately 0.01 second,
which is very close to the approach with recursive subquery factoring.

Listing 11-14. Execution statistics using dbms_hprof

select pci.runid,
level depth,
rpad(' ', (level - 1) * 3, " ') || fi.function as name,
fi.subtree elapsed time,
fi.function_elapsed time,
fi.calls
from (select runid, parentsymid, childsymid
from dbmshp parent child info
union all
select runid, null, 2 from dbmshp runs) pci
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join dbmshp_function_info fi
on pci.runid = fi.runid
and pci.childsymid = fi.symbolid
and fi.function <> 'STOP_PROFILING'
connect by prior childsymid = parentsymid
and prior pci.runid = pci.runid
start with pci.parentsymid is null
and pci.runid in (4);

RUNID DEPTH NAME SUBTREE_ELAPSED TIME FUNCTION_ ELAPSED TIME CALLS
4 1 plsgl vm 931 16 3
4 2 anonymous_block 77 77 1
4 2 FSTR 838 10 2
4 3 __static_sql_exec_lines 198 198 1
4 3 _ static_sql_exec_line8 530 530 4

Additional statistics for SQL statements can be found in v$sql as was
shown in a previous example.

Problems of a Combinatorial Nature

Combinatorial problems related to data may require generating
permutations to analyze combinations of elements. SQL provides various
ways to generate recordsets - connect by, recursive subquery factoring,
and a model clause; but if you want to refer or reuse during the generation
process the data generated so far, then this may be either tricky or inefficient.
Let’s consider a specific example: for a set or rows, generate sums of
values for all possible subsets with two or more elements. Listing 11-15
shows the script to generate a recordset of values such as each value is
greater than the sum of all values generated so far; thus the sum of values
for each subset is unique.
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Listing 11-15. Creating input set
exec dbms_random.seed(3);

create table t num as
select id, num
from dual
model
dimension by (1 id)
measures (1 num)
(
num[for id from 2 to 19 increment 1] order by id =
sum(num)[any] + trunc(dbms random.value(1, 11))

);
All permutations and sums for the first three elements are below:

select * from t_num where id <= 3;

ID NUM
1
2
15
1+8=09
1+ 15 = 16
8 + 15 = 23

1+ 8 + 15 = 24
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For measuring performance we will calculate the total sum to
minimize fetch, but the main goal is to generate all the subsets and
calculate sums. The number of all subsets for n elements is 2" including
empty subset, singletons, and original set. The total sum without

. 2” n n . n
singletons equals to ?in =Y, =(2""=1)Y x, or 72 for three rows and
i=1 i=1 i=1

536338548711 for all rows.

select sum(num) * (power(2, count(*) - 1) - 1) total from t num;

536338548711

There are at least two straightforward ways to generate all
permutations with connect by and calculate their sums as demonstrated in
Listing 11-16.

Listing 11-16. Connect by + join to get sums of all subsets

with
t1 as

(select power(2, rownum-1) row mask, num from t_num),
t2 as

(select rownum as total mask

from (select count(*) as cnt from t1)
connect by rownum < power(2, cnt)
-- or the same: from ti connect by num > prior num

)
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select count(*) cnt, sum(num) sum_num
from (select total mask as id, sum(num) as num
from t2, t1
where bitand(row_mask, total mask) <> 0
group by total mask
having count(*) > 1);

CNT SUM_NUM

524268 536338548711

With execution time around 25 seconds, most of the time was spent
on doing nested loops and re-evaluating subquery t1 524268 times. This
can be optimized if we specify the hint materialized in t1; after that the
execution time drops to 14 seconds.
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We can avoid join if we generate a sum expression with sys_connect_
by_path function and implement a function to evaluate it - this approach
is shown in Listing 11-17.

Listing 11-17. Connect by + UDF to get sums of all subsets

select count(*) cnt, sum(f _calc(path)) sum_num
from (select sys connect by path(num, '+") || '+' as path
from t_num
where level > 1
connect by num > prior num);
create or replace function f calc(p_str in varchar2) return
number 1is
pragma udf;
result number := 0;

i int := 0;
n varchar2(30);
begin
while true loop
i=1+1;

n := substr(p_str,
instr(p_str, '+', 1, i) + 1,
instr(p_str, '+', 1, i + 1) - instr(p_str, '+',
1, i) - 1);
if n is not null then
result := result + n;
else
exit;
end if;
end loop;
return result;
end f calc;
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Execution takes around 7 seconds if we specify «pragma udf» and
10 seconds otherwise. Most of the resources are used for evaluating an
expression for sum, if we comment out «sum(f_calc(path))» then the
execution time is less than 1 second.

Let’s now use a temporary table to store intermediate results:

create global temporary table tmp(lvl int, x int, num number);

This makes it possible to generate sums of all the combinations in just
half a second!

begin
insert into tmp (lvl, x, num)
select 1, rownum, num from (select num from t num order by
num);
for ¢ in (select rownum x, num
from (select num from t_num order by num)) loop
insert into tmp (1vl, x, num)
select c.x, 0, tmp.num + c.num from tmp where tmp.x < c.x;
end loop;
end;
/

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.53
select count(*) cnt, sum(num) sum_num from tmp where lvl > 1;

CNT SUM_NUM

524268 536338548711

Elapsed: 00:00:00.03
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Obviously, a PL/SQL approach performs much better that an SQL
for this task. PL/SQL code gives an impression that this logic can also be
implemented using recursive subquery factoring. But there is one catch -
in a PL/SQL loop, we need an entire tmp table that contains data from
all the iterations while recursive subquery factoring accesses data only
from a previous iteration. We can use a trick with an additional join to
add a recordset from a previous iteration to a recordset from the current
iteration. This approach is shown in Listing 11-18.

Listing 11-18. Recursive subquery factoring to get sums of all subsets

with
r0(x, num) as
(select rownum, num from (select num from t num order by num)),
rec(iter, 1lvl, x, num) as
(select 1, 1, rownum, num from r0
union all
select rec.iter + 1,
decode(z.id, 1, rec.lvl, rec.lvl + 1),
decode(z.id, 1, rec.x, 0),
decode(z.id, 1, rec.num, rec.num + r0.num)
from rec
join r0
on rec.iter + 1 = 10.x
join (select 1 id from dual union all select 2 id from dual) z
on (z.id = 1 or rec.x < r0.x))
select count(*) cnt, sum(num) sum_num

from rec
where iter = (select count(*) from t_num)
and 1lvl > 1;

286



CHAPTER 11 WHEN PL/SQL IS BETTER THAN VANILLA SQL

Even though it works and produces a correct result, this approach is
quite inefficient because on each iteration, we replicate all the data from
previous iterations. If we set sort_area_size to the maximum value, then
the elapsed time is around 30 seconds but anyway this was demonstrated
mainly for academic purposes to show that even a simple PL/SQL loop
may not be efficiently re-implemented using recursive subquery factoring.

If we change join order in the query, then it will fail with «ORA-32044:
cycle detected while executing recursive WITH query» and to avoid
that cycle clause is required even though this is a logically equivalent
query and has the same plan as the query from Listing 11-18 even without
a cycle clause.

from rec
cross join (select 1 id from dual union all select 2 id from
dual) z
join 10
on rec.iter + 1 = r0.x
where (z.id = 1 or rec.x < 10.X))
cycle iter set c to 1 default 0

Two tasks have been analyzed in this section; in the first case,
iterations help to avoid scanning unnecessary data or to “optimize plan,”’
while the second task has an iterative nature itself.

Specifics of Joins and Subqueries

SQL was designed to work with recordsets and, in fact, there are only
three join methods - HASH JOIN, NESTED LOOPS, and MERGE JOIN. All
of them have pros and cons and various scopes of application; HASH
JOIN and MERGE JOIN cannot be used for any arbitrary predicate, unlike
NESTED LOOPS.
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Speaking about subqueries, there are some limitations, for instance, a
nesting limit for correlated subqueries that sometimes makes it impossible
to implement complex logic in a subquery. These limitations, along with
some other details and examples, will be considered in the following
subsections.

Specifics of Joins

In this subsection we will consider a task when PL/SQL helps to
implement a look-up in a more efficient way than SQL.

Listing 11-19 shows a script to create a table with information about
phone calls containing phone numbers and durations in minutes.

Listing 11-19. Table with information about phone calls

create table phone call (num varchar2(11), duration int);
exec dbms_random.seed(1);
insert --+ append
into phone_call

select '01' || to_char(trunc(1e9 * dbms_random.value),
'fm099999999"),

trunc(dbms_random.value(1, 5 + 1))
from dual

connect by level <= 1e6;
commit;
exec dbms_stats.gather table stats(user, 'phone call');

Listing 11-20 shows a script to create a table with a static list of phone
codes for the United Kingdom. You can download this list using http://
www.area-codes.org.uk/uk-area-codes.xlsx and import it manually if
you do not have permission to get it via httpuritype in Oracle.
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Listing 11-20. Table containing a list of phone codes

create table phone_code as

with tbl as
(select regexp substr(httpuritype('http://www.area-codes.org.
uk/full-uk-area-code-1ist.php")

.getclob(),
'<table class="info">.*?</table>"',
1,
1,
'n") c
from dual)
select *
from xmltable('/table/tr' passing xmltype((select c from tbl))
columns
code varchar2(6) path '/tr/td[1]',
area varchar2(50) path '/tr/td[2]")
order by 1;

exec dbms_stats.gather table stats(user, 'phone call');

The goal is to calculate the total duration for each code.
There are some specifics in pre-generated data:

1) For simplicity, phone numbers start with 01, but in
reality the two first digits can be 01, 02, 03, 05, 07, 08,
and 09.

2) Some phone numbers are incorrect, because codes
for them do not exist: for example, 0119. This is
a side effect of generation and such calls will be
excluded from the result.

3) Numbers are not unique, which can be easily
checked with the query below.
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select count(*) cnt all, count(distinct num)

cnt_dist from phone call;

CNT_ALL CNT_DIST

1000000 999490

Speaking about phone codes, one code may be a prefix for another. In

such cases, the longest code that is a prefix for the phone number is the

actual code.

select *

from phone_code pc1
join phone_code pc2

on pc2.code like pci.code || '%'

and pc2.code <> pcl.code

order by 1, 3;
CODE  AREA

01387 Dumfries
01524 Lancaster
01539 Kendal
01539 Kendal
01539 Kendal

01697 Brampton (6 figure numbers)
01697 Brampton (6 figure numbers)
01697 Brampton (6 figure numbers)

01768 Penrith
01768 Penrith
01768 Penrith
01946 Whitehaven

12 rows selected.
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015242
015394
015395
015396
016973
016974
016977

017683
017684
017687
019467

Langholm

Hornby

Hawkshead
Grange-Over-Sands
Sedbergh

Wigton

Raughton Head
Brampton (4 and 5
figure numbers)
Appleby

Pooley Bridge
Keswick

Gosforth
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The possible length of the prefixes starting with 01 is 4, 5, and 6 digits.

select length(code) 1, count(*) cnt
from phone_code

where code like '01%'

group by length(code)

order by 1;
L CNT
4 12
5 582

For other countries, the range of code lengths may be much wider and the
number of cases when one code is a prefix for another may be much greater.
A straightforward solution is below:

select code, sum(duration) s
from (select ca.rowid,
num,
duration,
max (code)
keep(dense rank first order by length(code)
desc) code
from phone call ca
left join phone_code co
on ca.num like co.code || '%'
group by ca.rowid, num, duration)
where code is not null
group by code
order by code;
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To minimize output and fetching, we will be using an aggregate

function on top of inline view for performance testing.

select sum(code * sum(duration)) s, count(*) cnt

from (select

from
join
on
group

group by code;

2884843733

ca.rowid,

num,

duration,

max(code)

keep(dense_rank first order by length(code)
desc) code

phone_call ca

phone_code co

ca.num like co.code || '%'

by ca.rowid, num, duration)

select * from table(dbms xplan.display cursor(null,null,
'TOSTATS LAST'));
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As we see from the plan, temporary tablespace was not used during
execution (there are no Reads/Writes columns) and all the data was read
from memory. The only possible join method is NESTED LOOPS because
of a predicate containing the like operator. In fact, most of the time was
spent on doing NESTED LOOPS, and further grouping and ordering added
just 3 seconds.

To get a table cached in memory you may want to disable direct path
reads - “alter session set events '10949 trace name context
forever, level 1';”

Given that we know a possible range of code lengths in advance, we
can use this fact to achieve a HASH JOIN method with codes if we add an
auxiliary join to get all the prefixes for a given range.

select sum(code * sum(duration)) s, count(*) cnt
from (select ca.rowid,
num,
duration,
max(code)
keep(dense_rank first order by length(code)
desc) code
from phone call ca
cross join (select rownum + 3 idx
from dual connect by rownum <= 3) x
join phone_code co
on substr(ca.num, 1, x.idx) = co.code
group by ca.rowid, num, duration)
group by code;
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The performance considerably improved after this modification and
execution time dropped from 68 to 5 seconds - more than 10 times faster!

So cross joins generate three rows for each number to extract the
prefix of the corresponding length, and after that we join with phone
codes and take the longest prefix for each number. We may note that if
join was successful for a code with 6 digits, then there is no reason to join
with shorter codes for the current number. Ideally it would be nice to join
with an ordered set until the first match but this is not possible in SQL. On
the other hand, we can avoid any joins by using the PL/SQL function and
associative array for look-up.

create or replace package phone pkg is

type tp _phone code is table of int index by varchar2(6);
g_phone_code tp_phone_code;

function get code(p_num in varchar2) return varchar2
deterministic;

end phone_pkg;
/
create or replace package body phone pkg is

function get code(p _num in varchar2) return varchar2
deterministic is

1 num varchar2(6);
begin

1 num := substr(p _num, 1, 6);

while (1_num is not null) and (not g phone_code.exists(1l_
num)) loop

1 num := substr(l num, 1, length(1l num) - 1);
end loop;

return 1 num;
end;
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begin
for cur in (select * from phone code) loop
g_phone_code(cur.code) := 1;
end loop;
end phone_pkg;
/

select sum(code * sum(duration)) s, count(*) cnt
from (select ca.rowid, num, duration, phone pkg.get code(num)
code
from phone call ca
group by ca.rowid, num, duration)
group by code;

2884843733 607
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Further improvement is possible if we make the function deterministic
and pass only the first 6 digits of the number as an argument. But with an
increasing number and complexity of codes, the PL/SQL approach will be
more and more preferable against SQL.

Limitations of the Subqueries

As it was already mentioned in the first chapter, any query that requires
joining two and more recordsets may be implemented using explicit
joins with a join keyword. However, in some cases subqueries may be
preferable - for example, if we need to derive some attribute according
to complex logic, we can use scalar subqueries to leverage scalar
subquery caching and to avoid aggregate or analytic functions and other
complexities in the main query. Subqueries in the where clause also may
be more preferable than explicit joins - for instance, when ANTI or SEMI
joins are required, please refer to the quiz “Top Paths” in Chapter 12 for a
specific example (it does not require multiple nesting levels though).

Sometimes it’s not possible to implement complex logic with multiple
layers in correlated subquery because of nesting level limitation. These
limitations are not well documented but easy to demonstrate.

select t1.*,
(select *
from (select t2.name
from t2 where t2.id = t1.id order by t2.name) t
where rownum = 1) scalar
from t1;
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select t1.*
from t1
where exists
(select 1
from t2
where t2.id
and t2.id
(select id
from (select id from t3 where t3.id = ti1.id
order by 1)

t1.id

where rownum = 1));

Queries work fine in Oracle 12¢ but fail on 11g with «ORA-00904:
"D1"."DUMMY": invalid identifier»;in Oracle 12c you still may face
ORA-00904 for more complex subqueries.

You can implement logic from a subquery in UDF as a workaround
when the identifier from the main query is not visible in the subquery. In
addition, Oracle 12c provides «pragma udf», which provides additional
performance improvement when UDF is called in SQL.

If we have a look at final queries after transformations, we may notice
an artificial bind variable introduced instead of a column from the main

query.

select "T1"."ID" "ID",
"T1"."NAME" "NAME",
(select "T"."NAME" "NAME"
from (select "T2"."NAME" "NAME"
from "T2" "T2"
where "T2"."ID" = :b1
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order by "T2"."NAME") "T"
where rownum = 1) "SCALAR"
from "T1" "T1"

select "T2"."ID" "ID", "T1"."NAME" "NAME"
from "T1" "T1"
where exists (select 0
from "T2" "T2"
where "T2"."ID" = "T1"."ID"
and "T2"."ID" = (select "from$ subquery$ 003"."ID" "ID"
from (select "T3"."ID" "ID"
from "T3" "T3"
where "T3"."ID" = :b1
order by "T3"."ID")
"from$_subquery$ 003"
where rownum = 1))

The key difference between implementation logic in the UDF and in
the subquery is that UDF returns data as of the time of the current call
while the subquery returns data as of the time of query start.

To demonstrate the difference, let’s create a table and function that
takes around 5 seconds to execute.

create table t scn(id, name) as
select 1, 'A' from dual

union all select 2, 'B' from dual
union all select 3, 'C' from dual;

create or replace function f get name(p_id in int) return
varchar2 is
begin
dbms_lock.sleep(5);
for i in (select * from t_scn where id = p _id) loop
return(i.name);
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end loop;
end f_get name;
/

While the query below is running

select t main.*,
(select name from t_scn where id = t main.id) namel,
f get name(t_main.id) name2
from t_scn t_main;

Let’s update the row in the concurrent session

update t_scn set name = 'X' where id = 3;
commit;

Result in main session is the following:

select t main.*,
(select name from t_scn where id = t main.id) namei,
f get name(t_main.id) name2
from t_scn t_main;

ID NAME NAME1 NAME2

3C C X

This means that changes in a concurrent session during query
execution have been picked up by the function. To avoid this we need to
create an operator.

create operator op _get name binding (int) return varchar2 using
T _get name;
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After repeating the test we see that the operator guarantees the same
consistency as the subquery does.

select t main.*,
(select name from t_scn where id = t main.id) namei,
f get name(t_main.id) name2,
op_get name(t_main.id) name3
from t_scn t_main;

ID NAME NAME1 NAME2 NAME3

1A A A

2 B B B B

3C C
Summary

If arecordset can be achieved using vanilla SQL, then this is the fastest way
to get a result in the absolute majority of cases. However, for some specific
tasks, PL/SQL may be more preferable, which was demonstrated based on
examples divided into the following categories:

e Specifics of analytic functions;
o Iterative-like computations;
e Specifics of joins and subqueries.

It’s important to note that technically one of the below approaches was
used in each PL/SQL solution:

e Cursor for loop with processing in PL/SQL;
o Encapsulation in UDF and its usage in a query;

e Iterative execution of SQL statements.
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I want to emphasize one more time, then, that the size of the fetch is
very important in case of a cursor for loop processing.

In some cases, advanced SQL features like recursive subquery
factoring help to efficiently get the result using SQL, which otherwise
would require PL/SQL. The next chapter contains a series of tasks and
their solutions using advanced SQL features as well as a performance
comparison of different approaches.
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CHAPTER 12

Solving SQL Quizzes

In this last chapter I'd like to consider specific real-life tasks and their
solutions in SQL to demonstrate the power of Oracle SQL. The complexity
of the tasks will vary a lot as well as the depth of analysis for different
solutions. For a few tasks there will be both SQL and PL/SQL solutions, but
the main accent in this chapter is on SQL capabilities.

For the sake of simplicity I tried to eliminate all the unnecessary details
and make the problem formulations as simple as possible.

Converting into Decimal Numeral System

We have a string of symbols in some alphabet, and the goal is to convert
itinto decimal. The first symbol in the alphabet is zero, the value for the
second symbol is one, and the value for the third symbol is two, and so on.

Solution

Let’s start with the case when the alphabet is hexadecimal. In such a
situation we can use the function to_number with the corresponding
format model as shown in Listing 12-1.
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Listing 12-1. Converting hexadecimal value into decimal

var x varchar2(30)
var alphabet varchar2(30)
exec :alphabet := '0123456789ABCDEF';

PL/SOL procedure successfully completed.
exec :x := "1A0A';
PL/SQL procedure successfully completed.

select to number(:x, 'XXXX') num from dual;

Listing 12-2 shows the SQL approach to convert a string from an
arbitrary alphabet.

Listing 12-2. Converting string in arbitrary alphabet into decimal
in SQL

select sum(power(base, level - 1) *
(instr(:alphabet, substr(:x, -level, 1)) - 1)) num
from (select length(:alphabet) base from dual)
connect by level <= length(:x);

Similar logic can be implemented in PL/SQL as shown in Listing 12-3.
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Listing 12-3. Converting from arbitrary alphabet into decimal in
PL/SQL

create or replace function f_10base(p_x in varchar,
p_alphabet in varchar
default '0123456789ABCDEF")
return number is
result number := 0;
1 base int := length(p_alphabet);
begin
for i in 1 .. length(p x) loop
result := result + power(l base, i - 1) *
(instr(p_alphabet, substr(p x, -i, 1)) - 1);
end loop;
return result;
end f_10base;

Let’s compare the performance of the two approaches.

select sum(f_10base('ABC' || rownum)) f from dual connect by
level <= 1e6;

4.1760E+16
Elapsed: 00:00:16.61

select sum(num) f
from (select (select sum(power(base, level - 1) *
(instr(:alphabet, substr(x,
-level, 1)) - 1)) num
from (select length(:alphabet) base from dual)
connect by level <= length(x)) num
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from (select "ABC' || rownum x from dual connect by
level <= 1e6));

4.1760E+16
Elapsed: 00:00:25.53

As you see, the PL/SQL solution is faster; nevertheless the context
switches. You can use dbms_hprof and dbms_xplan with runtime
execution statistics to check in more detail where the time is spent for the
PL/SQL and SQL approach correspondingly.

To complete the picture let’s measure timing for a built-in function.

select sum(to number('ABC' || rownum, lpad('X', 10, 'X"'))) f
from dual
connect by level <= 1e6;

4.1760E+16
Elapsed: 00:00:01.11

The performance of an external C function would be approximately the
same as for a built-in function. This task demonstrates that in some cases
neither SQL nor PL/SQL is the best approach if performance is critical.

Connected Components

Graph theory is a huge subject with a number of terms, list of typical tasks,
and various ways of representing the graphs. RDBMSs are not the best tool
to work with generic graphs but SQL may be very efficient in working with
specific classes of graphs known as hierarchies.
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In real life you may face tasks with various types of graphs, and it’s
quite important to understand how this challenge can be approached, so
this and the next quiz are a quick touch on the subject.

In the current task let’s consider an undirected graph that is
represented as a list of edges and shown on Figure 12-1.

create table edge(x1, x2) as
select 10,20 from dual

union all select 50,40 from dual
union all select 20,30 from dual
union all select 20,40 from dual
union all select 60,70 from dual
union all select 80,60 from dual
union all select 20,90 from dual;

10

70 60

20

80
40

30
0

50

Figure 12-1. Connected components
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The goal is to number the connected components. The result for the
data above is this:

(O]
o
R N NNPR R R R R

90
9 rows selected.

So each node belongs to one of the two connected components in this
example, and it’s not critical which one is first and which one is second.

Solution

Listing 12-4 shows an SQL approach to number connected components.

Listing 12-4. Numbering connected components in SQL

select x, dense_rank() over(order by min(root)) grp

from (select connect by root x1 root, x1, x2

from edge
connect by nocycle prior x1 in (x1, x2)
or prior x2 in (x1, x2))

unpivot(x for x12 in(x1, x2))

group by x

order by 1, 2;
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Given that the graph is undirected, edge X1 - X2 means that nodes
may be traversed from X1 to X2 and the other way around; thus all the
combinations of parent-child relations have been specified in the connect
by condition to handle this.

Please pay attention that there is no start with clause, so for each edge
we are building all connected edges and then use pivot to return all the
connected nodes in column X. Finally, for each node we derive a minimal
root (which is defined as the starting value for X1 but similarly it may be
the starting value for X2) and number the connected components using
dense_rank.

The query looks quite concise but in fact it’s very inefficient because
the same edges are traversed multiple times, but this is the only way to
consider all possible connections.

The PL/SQL approach, however, may be very efficient and it’s
demonstrated in Listing 12-5. The required result can be achieved with a
single table scan and fast look-ups in associative arrays.

Listing 12-5. Numbering connected components in PL/SQL

create or replace type to 2int as object (x int, grp int)

/

create or replace type tt 2int as table of to 2int

/

create or replace function f connected component return tt 2int
pipelined is
i_list number := 0;

i number;
n number ;
k number;

type tp1l is table of binary integer index by binary integer;
type tp2 is table of tpl index by binary integer;

t1 tp1;

t2 tp2;
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begin
for c in (select x1, x2 from edge) loop

if not ti.exists(c.x1) and not ti.exists(c.x2) then
i list := 1 list + 1;
t1(c.x1) := i list;
t1(c.x2) := i list;
t2(i_list)(c.x1) := null;
t2(i list)(c.x2) := null;

elsif ti.exists(c.x1) and not ti.exists(c.x2) then
t1(c.x2) := t1(c.x1);
t2(t1(c.x1))(c.x2) := null;

elsif ti.exists(c.x2) and not ti.exists(c.x1) then
t1(c.x1) := t1(c.x2);
t2(t1(c.x2))(c.x1) := null;

elsif til.exists(c.x1) and til.exists(c.x2) and t1(c.x1) <>

t1(c.x2) then
n := greatest(ti(c.x1), ti(c.x2));
k := least(t1(c.x1), ti(c.x2));
i = t2(n).first;
while (i is not null) loop

t2(k) (i) := null;

t1(i) := k;

i := t2(n).next(i);
end loop;
t2.delete(n);

end if;
end loop;

i = t1.first;
for idx in 1 .. ti1.count loop
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pipe row(to 2int(i, t1(i)));
i = ti.next(i);
end loop;
end;

The T1 array contains an index of a connected component for each
node. The T2 array is the list of components where a component is an
array of nodes. In fact, t2 was introduced for performance reasons, because
if nodes for some edges belong to different components, then we need to
re-renumber nodes for one of the components, and a list of nodes for each
component makes this operation very fast.

select x, dense rank() over(order by grp) grp
from table(f connected component)
order by x;

The efficiency of two approaches in non-comparable and, frankly
speaking, SQL approach for this task is not reasonable at all. You can use
the approach below to generate unique edges:

exec dbms_random.seed(11);

create table edge as

select trunc(dbms random.value(1, 100)) x1,
trunc(dbms_random.value(1, 100)) x2

from dual
connect by level <= 61;
select count(distinct least(x1, x2) || ' ' || greatest(x1, x2))
from edge;

The PL/SQL approach takes a couple of milliseconds while an SQL
query takes more than 3 minutes to execute on my laptop. If you add a few
more elements, PL/SQL execution time still will be milliseconds while an
SQL approach will take hours.
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It’s important to note though that if the goal is to return a connected
component for a specific node instead of all connected components, then
a full table scan may not be the optimal approach if nodes are indexed. In
this case a combined SQL and PL/SQL approach to traverse the graph using
a breadth-first search may be the best solution. This is not implementable
in pure SQL even with recursive subquery factoring because traversing a
graph requires maintaining a single list of visited nodes.

Ordering Dependencies

In this task we will implement an algorithm on a directed acyclic graph -
DAG. The main difference between DAGs and hierarchies is that each
hierarchy node has one parent while there may be multiple parents and
children for some nodes in a DAG. This may result in various routes from
one node to another in DAG. SQL can be used to traverse directed graphs
in much more efficient way than undirected ones and the connect by
condition looks the same as for hierarchies, but the issue with multiple
possible paths between nodes may cause inefficiency.

A script from Listing 12-6 creates a table where each row represents a
dependency between two objects. There are no cycle dependencies but
several objects may depend on one specific object, as well as one object
may reference a number of other objects. Obviously such data is DAG and
not a hierarchy. Graphically it's shown on Figure 12-2, but please note that
edges are represented as arrows because the graph is directed.

Listing 12-6. Creating table describing dependencies

create table d(name, referenced name) as
(select null, 'o' from dual

union all select 'o', 'a' from dual
union all select 'o', 'd' from dual
union all select 'a', 'b' from dual
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'd', 'b" from dual
'b', 'e' from dual
'b', 'c¢' from dual
'e', 'c¢' from dual
'c¢', 'x' from dual
'c', 'y' from dual
'c¢', 'z"' from dual
y
A Z
C
b e
d a
0
null

Figure 12-2. Directed acyclic graph

315



CHAPTER 12  SOLVING SQL QUIZZES

The goal is to number dependencies starting with independent
objects. So independent objects represent the first level, objects that
depend on independent objects and do not have unvisited dependencies
represent the second level, and so on.

Solution

Listing 12-7 shows a straightforward approach to order dependencies.

Listing 12-7. Ordering dependencies in SQL

select referenced name, max(level) ord, count(*) cnt
from d
start with not exists
(select 1 from d d_in where d_in.name = d.referenced name)
connect by prior name = referenced name
group by referenced name
order by 2, 1;

R ORD CNT
X 1 1
y 1 1
z 1 1
C 2 6
e 3 3
b 4 12
a 5 6
d 5 6
) 6 12

9 rows selected.
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So x,y, and z represent the first level. The second level contains only
node c. Both b and e reference c but b also references e, so e must go
before b and this is the only node on the third level. Node b represents the
fourth level and so on.

You may notice that there is no «nocycle» keyword because there are
no cycles according to requirements. This approach is not quite efficient
because it builds all possible routes from independent nodes (we cannot
call them leaves because our data is DAG and not a tree) and visits the
same nodes multiple times. For example, there are 6 routes to node
b: x->c->b, y->c->b, z->c->b, x->c->e->b, y->c-> e->b, z->c-> e->b so it visits
two children from b six times each so b appears 12 times in the result set.

On the other hand we can use a breadth-first search algorithm for
traversing graphs, but this requires maintaining a list of visited nodes,
which is not doable using pure SQL.

Listing 12-8 shows PL/SQL implementation using a pipelined function.
We maintain a list of visited nodes in the result collection and use the

current collection to refer nodes added on a previous iteration.

Listing 12-8. Ordering dependencies in PL/SQL

create or replace type to_node as object (name varchar2(30),
1vl number)
/
create or replace type tt node as table of to node
/
create or replace function f_traverse return tt node is
result tt node;
current tt node;
tmp tt_node;
1vl int := 1;
begin
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select to node(referenced name, 1lvl) bulk collect
into current
from (select distinct referenced name
from d
where not exists
(select null from d d_in where d_in.name =
d.referenced name));
result := current;

while true loop
vl := 1vl + 1;

select to_node(name, 1lvl) bulk collect
into tmp
from (select distinct di.name
from d d1
join table(current) cur
on di.referenced name = cur.name
-- add only nodes without unvisited children
where not exists (select null
from d d2
left join table(result) r
on d2.referenced name = r.name
where di.name = d2.name
and r.name is null));

if tmp.count = 0 then
return result;

else
result := result multiset union all tmp;
current := tmp;
end if;
end loop;

end f traverse;
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This algorithm returns nodes on all levels including the last one, unlike
the demonstrated SQL approach.

select * from table(f traverse) order by 2, 1;

NAME LVL
X 1
y 1
z 1
C 2
e 3
b 4
a 5
d 5
o} 6

7

10 rows selected.

Performance may be further improved by creating indexes on the
name and referenced_name and using a temporary table with an index to
maintain a list of visited nodes. An SQL approach may be acceptable for
relatively simple DAGs, but if there are complex dependencies, then PL/SQL
will perform better. For instance, for the data below the PL/SQL approach
will be 100 times faster but in fact there is only one DAG with just 65 nodes.

create table d as
select decode(type, 'to', 'x' || to_char(x + 1), 'n' || x || y)
name,

decode(type, "to', 'n' || x ||y, "x" || x)

referenced name

from (select to char(trunc((rownum - 1) / 7) + 1) X,
to_char(mod(rownum, 7) + 1) y
from dual
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connect by level <= 8 * 7) n,
(select 'from' type
from dual
union all
select "to' from dual);

Percentile with Shift

Let’s move on to quizzes with analytic functions.

The goal sounds simple: for each row, calculate a percentile for fixed
value taking into account rows from the current row to n following.

A detailed explanation on how to calculate percentile can be found in
Oracle documentation for percentile_cont function (also you can use Excel
function - PERCENTILE).

For x=0.3 and n = 4 the result is as follows:

Order Value Percentile
1 10 64

2 333 95.5

3 100 82

4 55 338.5

6} 1000 1000

Solution

It’s not possible to specify a windowing clause when using percentile_cont
as an analytic function so it’s applied to the entire partition. Given that we
need to calculate percentile for a specific subset of rows starting with the
current row, we can get the required subset using a self join and use an
aggregate version of percentile_cont. See Listing 12-9.
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Listing 12-9. Calculating percentile with shift using self join and
percentile_cont

create table flow(ord, value) as
select 1, 10 from dual
union all select 2, 333 from dual
union all select 3, 100 from dual
union all select 4, 55 from dual
union all select 5, 1000 from dual;
select ti1.*, percentile cont(0.3) within group(order by
t2.value) pct
from flow t1
join flow t2 on t2.ord between ti.ord and ti.ord + 4
group by ti.ord, ti.value;

ORD VALUE PCT
1 10 64
2 333 95.5
3 100 82
4 55 338.5
5 1000 1000

We can get the same without percentile_cont if we implement
calculations described in the documentation for that function.
See Listing 12-10.

Listing 12-10. Calculating percentile with shift using self join and
analytic functions

select tt.*,
decode(frn, crn, frn value,
(cxn - rn) * frn value + (rn - frn) * crn value)
percentile
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from (select t.ord,
t.value,
t.n,
t.frn,
t.crn,
max(decode(xnum, frn, v)) frn value,
max (decode(xnum, crn, v)) crn value
from (select ti.*,
t2.value v,
row_number() over(partition by ti.ord
order by t2.value) rnum,
1 + 0.3 * (count(*) over(partition by
ti.ord) - 1) rn,
floor(1 + 0.3 * (count(*) over(partition
by ti.ord) - 1)) frn,
ceil(1 + 0.3 * (count(*) over(partition
by ti.ord) - 1)) crn
from flow t1
join flow t2
on t2.ord between ti.ord and ti.ord + 4) t
group by t.ord, t.value, t.rn, t.frn, t.crn) tt
order by tt.ord;

ORD VALUE RN FRN CRN FRN_VALUE CRN_VALUE PERCENTILE

1 0 2.2 2 3 55 100 64
2 333 1.9 1 2 55 100 95.5
3 100 1.6 1 2 55 100 82
4 55 1.3 1 2 55 1000 338.5
5 1000 1 1 1 1000 1000 1000
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So we calculate frn and crn indexes for each subset, derive
corresponding values, and perform linear interpolation when necessary.
But do we really need self join?

Let’s consider the solution when values are ordered in a source table.
The result of the Listing 12-11 differs from the two previous queries
because values are ordered by ord.

Listing 12-11. Calculating percentile with shift using analytic
functions only

select ttt.*,
decode(frn, crn, frn value, (cxrn - rn) * frn value +
(rn - frn) * crn_value) percentile
from (select tt.*,

nth value(value, ord + frn - 1)
over(order by ord range between unbounded
preceding and unbounded following) frn_v,
nth value(value, ord + crn - 1)
over (order by ord range between unbounded
preceding and unbounded following) crn v,
last_value(value)
over (order by ord range between frn - 1
following and frn - 1 following) frn_value,
last_value(value)
over(order by ord range between crn - 1
following and crn - 1 following) crn_value

from (select t.*, floor(xn) frn, ceil(xn) crn

from (select to0.*,
1+
0.3 * (count(*)
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over(order by ord range
between current row and 4
following) - 1) rn

from flow to) t) tt) ttt;

ORD VALUE RN FRN CRN FRN.V CRN_V FRN_VALUE CRN_VALUE PERCENTILE

1 10 2,2 2 3 55 100 55 100 64
2 55 1,9 1 2 55 100 55 100 95,5
3 100 1,6 1 2 55 100 100 333 239,8
4 333 1,3 1 2 55 100 333 1000 533,1
5 1000 1 1 1 55 100 1000 1000 1000

Corresponding values for crn and frn indexes for each row have been
derived in two completely different ways - nth_value/last_value. Moreover,
the function nth_value (crn_v and frn_v columns) returns an incorrect
result for Oracle 11g if its second parameter is not a constant (this bug has
been fixed in 12c).

We can run a query from Listing 12-9 and get the same result, but, as it
was already mentioned, this approach works only if the value ordered by
ord. If that is not true, then calculating indexes crn and frn is not a problem
at all, but deriving correspondent values is not possible with analytic
functions - for each row we need to order its own subset of values (this
logic is implemented in Listing 12-10 as «<row_numbexr() over(partition
by ti.ord order by t2.value) rnum»).
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N Consequent 1s

For the table below the goal is to find the number of sequences with 10
consequent 1s ordered by id. If there is, say, 11 consequent 11s, this means
two sequences: from the 1st to 10th and from the 2nd to 11th row.

exec dbms_random.seed(1);
create table t sign as
select rownum id,
case when trunc(dbms_random.value(1, 10 + 1)) > 3
then 1
else 0
end sign
from dual
connect by rownum <= 1e6;

Solution

There are multiple possible approaches to a solution:
o A fewlayers of analytic functions
e Analytic function with windowing clause
e Model clause
o Pattern matching

Below you can see the code along with the timings. The following
statements have been executed to avoid temporary tablespace usage and
ensure that there is enough memory for work areas.

alter session set workarea size policy = manual;
alter session set sort area size = 2147483647;
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Results are the following:

select count(*) cnt
from (select t.*, sum(sign) over(partition by g order by id) s
from (select id, sign, sum(x) over(order by id) g
from (select to.*,
decode(nvl(lag(sign) over(order
by id)) '1))
sign,
0,
1) x
from t_sign to)
where sign <> 0) t)
where s >= 10;

Elapsed: 00:00:03.11

select count(*)
from (select id,
sum(sign) over(order by id rows between 9
preceding and current row) s
from t_sign)
where s = 10;

COUNT (*)

Elapsed: 00:00:01.45
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select count(*) cnt from

(

)

select *

from t_sign

model

ignore nav
dimension by (id)
measures (sign, 0 s)
rules

(

SOLVING SQL QUIZZES

s[any] order by id = decode(sign[cv()], 0, 0, s[cv()-1]+

sign[cv()])
)

where s >= 10;

Elapsed: 00:00:04.64

select count(*)

from t_sign
match_recognize

(

order by id
one row per match
after match skip to first one
pattern (strt one{9})
define
strt as strt.sign = 1,
one as one.sign =1
mr;
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COUNT (*)

Elapsed: 00:00:01.55

So the fastest approaches are pattern matching and analytics with a
windowing clause, next is a solution with several analytic functions that
requires two sorts and finally the model cause.

Next Value

For each row from table

exec dbms_random.seed(1);

create table t_value as

select trunc(dbms_random.value(1, 1000 + 1)) value
from dual

connect by level <= 1e5;

derive the next largest value.
Sample result:

value next_value

—_

2
2 3
2 3
3

null
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Solution

It’s not possible to use a lead function given that values may repeat so we
cannot use a fixed shift. However, similar to the previous quiz, there are
multiple approaches to the solution:

o A fewlayers of analytic functions

e Analytic function with windowing clause
e Model clause

o Pattern matching

Aggregate function «sum(nvl(next_value, 0) - value)» was used to
minimize fetch.

select sum(nvl(next value, 0) - value) s
from (select value, max(next value) over(partition by value)
next_value
from (select value,
decode(lead(value, 1) over(order by
value),
value,
to_number(null),
lead(value, 1) over(order by
value)) next_value
from t_value));

Elapsed: 00:00:02.33
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select sum(nvl(next value, 0) - value) s
from (select value,
min(value) over(order by value range between 1
following and 1 following) next value
from t_value);

Elapsed: 00:00:01.79

select sum(nvl(next value, 0) - value) s
from
(
select value, next value
from t_value
model
dimension by (row number () over (order by value desc) rn)
measures(value, cast(null as number) next value)
rules
(
next _value[rn > 1] order by rn =
decode(value[cv()], value[cv()-1], next value[cv()-1],
value[cv()-1])
)
);

Elapsed: 00:00:05.94
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select sum(nvl(next value, 0) - value) s
from (select * from t value union all select null from dual)
match_recognize
(
order by value nulls last
measures
final first (next_val.value) as next_value
all rows per match
after match skip to next val
pattern (val+ {-next val-})
define
val as val.value = first(val.value)

Elapsed: 00:00:01.53

The most efficient solutions for this quiz are also pattern matching
and analytics with a windowing clause, then a solution with lead and
max functions and finally a model clause. It’s quite important to use a
minimally required window in a windowing clause. For example, if you
specify “range between 1 following and unbounded following,”
then the result will be correct but the elapsed time will be few orders
of magnitude greater than for “range between 1 following and 1
following”

One specific row with null values has been added for a pattern
matching solution so that the last row in the original tables has a next row.
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Next Branch

Let’s define “next branch” as the nearest row after a traversing hierarchy
such as its row number greater than for current row while its level is less or
equal to the current level. This value may be very useful if we want to apply
some logic for all children of a given node.

The goal is to find a solution without joins and subqueries.

This approach with joins is trivial:

with t(id, parent id, description, amount) as
(
select 1 id, null, '"top', 10 from dual
union all select 2, 1, 'top-one', 100 from dual
union all select 3, 2, 'one-one', 2000 from dual
union all select 4, 2, 'one-two', 3000 from dual
union all select 5, 1, 'top-two', 1000 from dual
2,
6)

union all select 6, 'one-three', 300 from dual

union all select 7, "three-one', 1 from dual
, h as

select id, parent_id, description, amount, level 1, rownum rn
from t
start with id = 1
connect by parent_id = prior id
)
select h.*,
(select min(xn)
from h ho
where ho.rn > h.rn
and ho.1l <= h.1) next_branch
from h;
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ID PARENT ID DESCRIPTI AMOUNT L RN NEXT_BRANCH

1 top 10 1 1

2 1 top-one 100 2 2 7
3 2 one-one 2000 3 3 4
4 2 one-two 3000 3 4 5
6 2 one-three 300 3 5 7
7 6 three-one 1 4 6 7
5 1 top-two 1000 2 7

7 rows selected.

For rows with ID in (3, 4), the next branch is the next row because it
has the same level. For rows with ID in (2, 6, 7), the next branch is row with
RN =7 because it has a lower level.

Solution

It may seem that logic can be easily rewritten with analytic functions, but
we face two limitations that have been demonstrated earlier for analytic
functions in the corresponding chapter.

1) It’s not possible to specify multiple ranges when
ordering by multiple columns. In this particular case
we cannot specify a range for rn

rn range between 1 following and unbounded following
and in the same time range for 1
1 range between unbounded preceding and current row

2) Ifwe try to order by only one column whether it’s 1 or
rn, we have to limit rows by the second column in a
function, but it’s not possible to use the current value
of that attribute in the expression for a function.
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As was already mentioned in the chapter about model clauses, the first
case can be easily implemented using a model clause while the second
case requires iterations and an auxiliary measure to use it as a value of a
given attribute from the current row on each iteration.

Listing 12-12 shows the implementation using the model clause.

Listing 12-12. Finding next branch using model clause

select *
from h
model
dimension by (1, rn)
measures (id, parent id, rn xrn, 0 next branch)
rules
(
next _branch[any, any] order by rn, 1 =
min(xrn)[1 <= cv(1), rn > cv(rn)]

)5

L RN ID PARENT_ID XRN NEXT_BRANCH
1 1 1 1

2 2 2 1 2 7
3 3 3 2 3 4
3 4 4 2 4 5
3 5 6 2 5 7
4 6 7 6 6 7
2 7 5 1 7

7 rows selected.
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select *
from h
model
dimension by (rn)
measures (id, parent id, 1, 0 1 cur, rn xrn, 0 next branch)
rules iterate (1e6) until 1[iteration number+2] is null
(
1 cur[rn > iteration number + 1] = 1[iteration number + 1],
next_branch[iteration number + 1] =
min(case when 1 <= 1 cur then xrn end)[rn > cv(zn)]

)
order by rn;
RN ID PARENT_ID L L_CUR XRN NEXT_BRANCH

1 1 1 0 1
2 2 1 2 1 2 7
3 3 2 3 2 3 4
4 4 2 3 3 4 5
5 6 2 3 3 5 7
6 7 6 4 3 6 7
7 5 1 2 4 7

7 rows selected.

I believe there is no need to say that the first approach is more efficient
than the second one with iterations and auxiliary measure, but better
solution may be provided with analytic functions as shown in
Listing 12-13 if we made some assumptions.
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Listing 12-13. Finding next branch using analytic functions

select ho.*,
nullif(max(rn) over(order by s range between current
row and x - 1e-38 following),
count(*) over()) + 1 next branch
from (select h.*,
power(2 * 10, 1 - 1) x,
sum(power(2 * 10, 1 - 1)) over(order by rn) s

from h) ho;

ID PARENT_ID L RN X S NEXT_BRANCH
1 1 1 1 1
2 1 2 2 ,05 1,05 7
3 2 3 3 ,0025 1,0525 4
4 2 3 4 ,0025 1,055 5
6 2 3 5 ,0025 1,0575 7
7 6 4 6 ,000125 1,057625 7
5 1 2 7 ,05 1,107625

7 rows selected.

If we assume that each node has not more than 10 direct descendants,
then the sum of x for all possible descendants for a given node on the nth
level can be calculated as the sum of the series below

c ‘ C ‘ 1 &1 1
Z] 10* 2 i+n—1 21 n— 1*101*21 20n—1 ;E_F

In other words, the sum of x for all descendants does not exceed value

x for a given node, or more specifically: for the node on the 1st level, the

limit of the sum equals to 1; for the node on the 2nd level, the limit of the
sum equals to 0.05 and so on.
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Practically, depth is limited with number precision and we assume that
the difference between x and the sum of x for all descendants is never less
than 1e-38, thus the windowing clause is «<range between current row
and x - 1e-38 following»; so the window spans the current node and all
its descendants. If we defined range as «<range between 1e-38 following
and x - 1e-38 following» then the window covers only all descendants.

Eventually we managed to calculate a columns s that can be used
to define a window with a range by x. This technique allows us to solve
various tasks that require applying some logic to all descendants for a
given node, possible, including the node itself.

For example, if we need to calculate the number of all descendants or
their sum, including the value of the current node, then it can be done as
shown in Listing 12-14.

Listing 12-14. Applying logic using window by all descendants

select ho.*,
count(*) over(order by s range between 1e-38 following
and x - 1e-38 following) cnt children,
sum(amount) over(order by s range between current row
and x - 1e-38 following) h_sum
from (select h.*,
power(2 * 10, 1 - 1) x,
sum(power(2 * 10, 1 - 1)) over(order by rn) s
from h) ho;

337



SOLVING SQL QUIZZES

CHAPTER 12

NIYATIHD IND

G79L0T‘T
G79L50°T
GLS0‘T
GS0‘T
G7S0‘T
S0°tT

S0°¢
GTT000°¢
Gz00°¢
Gz00°¢
Gz0o0°¢
S0°¢

< N M n N < N

000T

00¢
000¢€
000t
00T

LINNOWY

om1-doy
dU0-291Y3}
99IY3-3uo
OM]-3Uo
3uo-3uo
auo-dojy
doy

I1d4T¥2S3d

*p9129T3sS Smox /[

1T N &N N O

aI INF¥Vd dI

338



CHAPTER 12 SOLVING SQL QUIZZES

Without an analytic function it would require a join/subquery or

model clause. However, Oracle 12c provides one more way of doing that -

pattern matching.

select *
from (select h.*, power(2 * 10, 1 - 1) x from h)
match_recognize
(
order by rn
measures
first (id) as id,
first (parent_id) as parent id,
first (1) as 1,
first (rn) as rn,
final count(*)-1 cnt_children,
final sum(amount) h_sum
one row per match
after match skip to next row
pattern (y+)

define
y as sum(x) < 2 * first(x)
) mr;
ID PARENT_ID L RN CNT_CHILDREN
1 1 1 6
2 1 2 2 4
3 2 3 3 0
4 2 3 4 0
6 2 3 5 1
7 6 4 6 0
5 1 2 7 0

7 rows selected.
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In this solution we used a condition with aggregate function «sum(x)
< 2 * first(x)» instead of a cumulative sum. An equivalent condition
using both x and sis «last(s) - first(s) < first(x)».If however, you
use «max(s) - min(s) < first(x)», then the query fails with ORA-03113
(versions 12.2.0.1.0, 12.1.0.2.0). Using pattern matching, specific functions
first/last is more preferable than aggregate functions min/max because we
know that s is monotonically increasing.

It’s possible to use a rule with min/max; however if we use all rows
instead of one row and apply filtering, this obviously introduces additional
costs.

select *
from (select h.*,
power(2 * 10, 1 - 1) x,
sum(power(2 * 10, 1 - 1)) over(order by rn) s
from h) ho
match_recognize
(
order by rn
measures
final count(*)-1 cnt_children,
final sum(amount) h_sum,
count(*) cnt
all rows per match
after match skip to next row
pattern (y+)
define
y as max(s) - min(s) < first(x)
) mr
where cnt = 1;
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And finally, the most important detail when using pattern matching is
that there is no need to use a trick based on the limit of the sum if we want
to find the next branch or apply some logic to all the descendants. We just
need to specify a pattern that matches all descendants and start the search
from every row -«after match skip to next row».

select *
from h
match_recognize
(
order by rn
measures
classifier() cls,
first (id) as id,
first (parent_id) as parent id,
first (1) as 1,
first (rn) as rn,
first (amount) as amount,
final count(child.*) cnt_children,
final sum(amount) h_sum
one row per match
after match skip to next row
pattern (strt child+|no_children)
define
child as child.1l > strt.l
) mr;
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CLS ID PARENT_ID L RN AMOUNT ~ CNT_CHILDREN H SUM
CHILD 1 1 1 10 6 6411
CHILD 2 1 2 2 100 4 5401
NO_CHILDREN 3 2 3 3 2000 0 2000
NO_CHILDREN 4 2 3 4 3000 0 3000
CHILD 6 2 3 5 300 1 301
NO_CHILDREN 7 6 4 6 1 0 1
NO_CHILDREN 5 1 2 7 1000 0 1000

7 rows selected.

Random Subset

For the table containing n rows with a primary key and values from 1 to n
without gaps:

create table t id value as

select rownum id, 'name' || rownum value from dual connect by
rownum <= 2eb;

alter table t_id value add constraint pk_t _id value primary
key (id);

The goal is to return k unique random rows such as the probability that
a row appears in the result is equal for all rows. For simplicity let’s assume
k equals 10.

Solution

A trivial solution is below:

select *
from (select * from t id value order by dbms random.value)
where rownum <= 10;
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In this case we generate dbms_random.value for all rows and then take
the first 10 rows with the lowest value.

If the table is wide - that is, contains many columns or some long
strings, then we can optimize sort by ordering only rowids and introducing
an additional join.

select *
from t_id value
where rowid in
(select *
from (select rowid from t_id value order by
dbms_random.value)
where rownum <= 10);

For the table introduced in this task, demonstrated optimization does
not lead to noticeable improvement though.

Given that all IDs start from 1 and there are no gaps, we can use the
approach below with generating 10 random IDs.

select *
from t_id value
where id in (select trunc(dbms_random.value(1,
(select max(id) from t_id value) + 1))
from dual
connect by level <= 10);

There is some chance though that we generate duplicates. For
example, the query below returns 9 rows instead of 10:

exec dbms_random.seed(48673);
PL/SQL procedure successfully completed.

select *
from t_id value
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where id in (select trunc(dbms_random.value(1,
(select max(id) from t_id value) + 1))
from dual
connect by level <= 10);

564703 name564703
917426 name917426
1230672 namel1230672
1837951 name1837951
1367140 name1367140
248223 name248223
873017 name873017
581109 name581109
1206874 name1206874

9 rows selected.

We can work around it by pre-generating a few reserve rows and by
selecting k unique rows. However, to avoid even a theoretical chance of
duplicates, we need to validate for the kth row whether all generated rows
are unique. If not, then generate a new row and re-validate. This approach
with referencing all generated rows can be implemented using a model
clause or recursive subquery factoring.

select *
from t_id value
where id in
(
select distinct x
from dual
model return updated rows
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dimension by (0 id)
measures(0 i, 0 x, (select max(id) from t id value) max_id)
rules

iterate (1e9) until i[0] = 10

(

x[iteration number] = trunc(dbms random.value(1,

max_id[0] + 1)),

i[0] = case when iteration number < 10 - 1

then 0 else count(distinct x)[any] end

)
)5

If we use «exec dbms_random.seed(48673)», then validation will be
executed twice: after the 10th generated row and after the 11th, but in
mostly all cases their validation will happen only once.

A solution using recursive subquery factoring is below:

with rec(lvl, batch)
as (select 1,
numbers (trunc(dbms_random.value(1, 2e6 + 1)))
from dual
union all
select 1vl + 1,
batch multiset union all
numbers (trunc(dbms random.value(1, 2e6 + 1)))
from rec
where case when 1vl < 10 then 0
-- cardinality(set())
-- does not work in recursive member
else (select count(*) from table(set
(rec.batch)))
end < 10)
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select *
from t_id value
where id in (select column value
from (select *
from (select * from rec t order by 1lvl
desc)
where rownum = 1),
table(batch));

We accumulate generated values in a column batch that has data type
numbers and check uniqueness starting from a k iteration, similarly to a
model solution. For simplicity, the maximum value has been hard-coded
instead of using a scalar subquery.

The disadvantage of SQL approaches is that we need to scan all
generated values to check uniqueness, which may be inefficient for large k.
PL/SQL helps to avoid that if we use an associative array (this logic can be
encapsulated in a pipelined function and used in SQL).

declare
type tp _arr is table of binary integer index by binary integer;
arr tp arr;
i int := 0;

begin

while true loop
arr(trunc(dbms_random.value(1, 2e6 + 1))) := null;
i=1+1;
if i »>= 10 and arr.count = 10 then

exit;

end if;

end loop;
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i := arr.first;
while (i is not null) loop
dbms_output.put line(i);
i := arr.next(i);
end loop;
end;
/

On the other hand, the more values we need to generate, the more
preferable the first approach with ordering by random value. Also I'd like
to highlight that all approaches that generate k unique values work only if
there are no gaps. So if the primary key is varchar2, then we may need to
read all the data and map all the rows to array or integers.

Covering Ranges

For the table containing ranges from a to b such as b > a and a is unique

create table t_range(a, b) as
(select 1, 15 from dual

union all select 3, 17 from dual
union all select 6, 19 from dual
union all select 10, 21 from dual
union all select 17, 26 from dual
union all select 18, 29 from dual
union all select 20, 32 from dual
union all select 24, 35 from dual
union all select 28, 45 from dual
union all select 30, 49 from dual);

we need to return covering ranges (1:15), (17:26), (28:45), that is, we
start from the row with the minimal a and then pick up the row with the
minimal a greater than the current b and so on.
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Solution

Relatively simple, it can be solved using connect by and analytic functions,

but performance is quite inefficient in this case.

select a, b
from (select a,
b:
min(a) over(order by a range between b - a
following
and unbounded following) as next_a,
min(a) over() start a
from t_range)
start with a = start a
connect by prior next a = a;

A B
1 15
17 26
28 45
select a, b

from (select a, b, lag(a) over(order by a) as lag a from
t_range)

start with lag_a is null

connect by a >= prior b and lag _a < prior b;

A B
1 15
17 26
28 45
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A quite elegant and efficient solution can be demonstrated using
pattern matching.

select *
from t_range
match_recognize
(
order by a
all rows per match
pattern((x|{-dummy-})+)

define
x as nvl(last(x.b, 1), 0) <= x.a
) mr;
A B
1 15
17 26
28 45

There are some alternative solutions using a model clause but their
performance is worse than pattern-matching solutions.

Zeckendorf Representation

Zeckendorf’s theorem states that every positive integer can be represented
uniquely as the sum of one or more distinct Fibonacci numbers in such a
way that the sum does not include any two consecutive Fibonacci numbers.

For any given positive integer, Zeckendorf representation can be found
by using a greedy algorithm, choosing the largest possible Fibonacci
number at each stage.
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Our goal is to find representation that satisfies the conditions of
Zeckendorf's theorem for all numbers from table n.

create table n(num) as select 222 from dual union all select
3690 from dual;

The expected result is

NUM PATH

222 144+455+21+2
3690 2584+987+89+21+8+1

For simplicity, let’s assume that we have a table fib(lvl, value) with the
first 20 Fibonacci numbers. Numbers can be generated using one of many
ways described in this book.

Solution

A brute force solution can be implemented using connect by as follows.

e Generate all permutations of Fibonacci numbers that
are less than a given number;

o Filter only those with sum value equals to given number;

o Filter permutation with a min number of elements.

Listing 12-15. Zeckendorfrepresentation using connect by

with n_fib as
(select num, value, 1lvl, max(lvl) over(partition by num)
max_1lvl
from n
join fib
on fib.value <= n.num),
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permutation as
(select num, sys connect by path(value, '+') path, level p 1lvl
from n_fib
start with 1lvl = max_1vl
connect by prior num = num
and prior value > value
and sys guid() is not null)
select num,
max(substr(path, 2)) keep(dense rank first order by
p_lvl) path
from (select num, path, p 1lvl
from permutation p
join fib
on instr(p.path || '+', "+" || fib.value || "+') > 0
group by num, path, p lvl
having sum(value) = num)
group by num
order by num;

Obviously this approach is extremely inefficient, and we can instead,
for each input number, loop thorough Fibonacci numbers in descending
order and on each step mark a current Fibonacci numbers if its sum with
the numbers marked so far does not exceed the input number. This iterative
logic can be implemented using recursive subquery factoring, for example.

Listing 12-16. Zeckendorf representation using recursive subquery
factoring and cross apply

with n_fib as
(select num, value, 1vl, max(lvl) over(partition by num) max_lvl
from n
join fib
on fib.value <= n.num),
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rec(lvl, num, f, s) as
(select 1, n_fib.num, n_fib.value, 0
from n_fib
where n_fib.1vl = n_fib.max_1vl
union all
select rec.1vl + 1, l.num, l.value, rec.f + rec.s
from rec
cross apply (select *
from (select *
from n_fib
where n_fib.num = rec.num
and n_fib.value + rec.s + rec.f
<= rec.num
order by lvl desc)
where rownum = 1) 1)
cycle 1vl set c to 1 default 0
select num, listagg(f, '+') within group(order by f desc) path
from rec
group by num
order by num;

The lateral view has been used in Listing 12-16 in order to get on each
step a max Fibonacci number that satisfies a condition. As was mentioned
in the previous chapter, “When PL/SQL Is Better Than Vanilla SQL,” there
may be a false positive cycle detection if there are multiple joins or lateral
views in a recursive member; «cycle» clause was used to handle that.

This solution can be simplified and optimized by using a scalar
subquery instead of a lateral view - in this case, a query can be executed
on Oracle 11g.
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Listing 12-17. Zeckendorf representation using recursive subquery
factoring. Simplified

with rec(lvl, num, f, s) as
(select 1,
n.num,
(select max(fib.value) from fib where fib.value
<= n.num),
0
from n
union all
select 1vl + 1,
d.num,
(select max(fib.value)
from fib
where fib.value <= d.num - (d.f + d.s)),
d.f +d.s
from rec d
where d.s + d.f < d.num)
select num, listagg(f, '+') within group(order by f desc) path
from rec
group by num
order by num;

Asyou see, table fib is scanned multiple times for both approaches. To
avoid multiple scans we can join tables n and fib and apply a model on top
of the joined recordset.
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Listing 12-18. Zeckendorfrepresentation using model clause

with n_fib as
(select num, value, 1lvl

from n
join fib
on fib.value <= n.num)
, M as
(select *
from n_fib
model
ignore nav

partition by (num part)
dimension by (1lvl)
measures (num, value, 0 x)
rules
(
x[any] order by 1lvl desc =
case when x[cv(1lvl)+1] + value[cv(1lvl)] <= num[cv(1lvl)]
then x[cv(1vl)+1] + value[cv(1lvl)]
else x[cv(1lvl)+1]
end
)
select num, listagg(f, '+') within group(order by f desc) path
from (select num, max(value) f from m group by num, x)
group by num
order by num;

And finally the most efficient solution can be implemented using
pattern matching.
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Listing 12-19. Zeckendorf representation using pattern matching

select num,
(select listagg(value, '+')
within group(order by value desc) path
from (select n.num, fib.value from fib) y
match_recognize
(
order by value desc
all rows per match
pattern((x|{-dummy-})+)
define
x as sum(x.value) <= num
) mr
) path
from n;

Instead of a scalar subquery we could have used an explicit join with
afib table and «partition by num order by value desc»in a match
recognize clause.

Implementation using recursive subquery factoring cannot be done in
a correlated scalar subquery because in this case it’s not possible to refer
columns from the main table.

Let’s demonstrate this on a simple example:

select t.*,
(with rec(lvl) as (select /*t.id*/ 5 lvl from dual
union all
select rec.lvl + 1 from rec where
1vl < 10)
select listagg(lvl, '
from rec) str
from (select 5 id from dual) t;

, ') within group(order by 1lvl)
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If you uncomment t.id the query will fail with «ORA-00904: "T"."ID":
invalid identifier».

Top Paths

For the table with the list of paths, return only those that do not have

subpaths.

Listing 12-20. The list of paths

create table t_path(path) as
select '/tmp/cat/' from dual

union
union
union
union
union
union
union
union

all
all
all
all
all
all
all
all

select
select
select
select
select
select
select
select

connect by level

"/tmp/cata/' from dual

"/tmp/catb/' from dual

"/tmp/catb/catx/" from dual

"/usr/local/' from dual
"/usr/local/lib/1liba/' from dual
"/usr/local/lib/1libx/' from dual
'/var/cache/' from dual
"/var/cache/'||'xyz"||rownum||'/" from dual
<= 1eb;

For the data from Listing 12-20, the expected result is the following:

/tmp/cat/

/tmp/cata/
/tmp/catb/

/usr/local/
/var/cache/
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Solution

A straightforward solution is self join on like and filtering. The main
disadvantage of this approach is that the join method can be only NESTED
LOOPS because of the join predicate, or technically there will be a full scan
of an outer table for each row from the inner table. This can be improved

a little bit if we use not exists instead of an outer join - in this case Oracle
will scan the outer table until the first match for each record from the inner
table is found.

Listing 12-21. Filtering top paths using join/subquery

select t_path.path
from t_path
left join t_path t top
on t_path.path like t top.path || '% /'
where t_top.path is null;

/tmp/cat/
/tmp/cata/
/tmp/catb/
/usr/local/
/var/cache/

Elapsed: 00:00:34.54
select path
from t_path
where not exists (select null
from t_path t_top
where t_path.path like t top.path || '% /');
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/tmp/cat/
/tmp/cata/
/tmp/catb/
/usr/local/
/var/cache/

Elapsed: 00:00:09.63

After rewriting the query with a not exist execution, time dropped more
than thrice. If we specify an additional filter <and where rownum = 1»ina
subquery, this will have no impact on performance because of the way how
filter works.

Apparently most of the time is spent on joining and evaluating the like
predicate and it would be good to get rid of it. We can derive all subpaths
for each path and if some paths have common subpaths, then return only
those with a minimal number of subpaths as shown in Listing 12-22.

Listing 12-22. Filtering top path using lateral and group by

with t0 as
(select path,
length(path) - length(replace(path, '/')) - 1 depth,
substr(path, 1, instr(path, '/', 1, 1l.id + 1)) token
from t_path,
lateral (select rownum id
from dual
connect by level <
length(path) - length(replace(path, '/'))) 1),
t1 as (select t0.*, min(depth) over(partition by token) m from to)
select path from t1 group by path, depth having depth = min(m)
order by path;
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/tmp/cat/
/tmp/cata/
/tmp/catb/
/usr/local/
/var/cache/

Elapsed: 00:00:22.78

In this case the lateral view also causes NESTED LOOPS, which is quite
CPU intensive and the final execution time is somewhere between the first
and second query from Listing 12-21.

If a maximal possible path depth is known in advance, then we can
implement the following approach: for each subpath we check if the
current path contains something after subpath (p; is not null) and there is
another path that terminates in this subpath (m; = 0) then the current path
is filtered out.

Listing 12-23. Filtering out top path using tricky analytics

select path
from (select t1.*,

min(nv12(p2, 1, 0)) over(partition by p1) m2,
min(nv12(p3, 1, 0)) over(partition by p1, p2) m3,
min(nvl2(p4, 1, 0)) over(partition by p1, p2,
P3) m4,
min(nv12(p5, 1, 0)) over(partition by p1, p2,
p3, p4) m5
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from (select path,
substr(path, i1, i2 - i1) p1,
substr(path, i2, i3 - i2) p2,
substr(path, i3, i4 - i3) p3,
substr(path, i4, i5 - i4) p4,
substr(path, i5, i6 - i5) p5
from (select path,

instr(path, '/', 1, 1) i1,
instr(path, '/', 1, 2) i2,
instr(path, '/', 1, 3) i3,
instr(path, '/', 1, 4) i4,
instr(path, '/', 1, 5) i5,
instr(path, '/', 1, 6) i6

from t_path) to) t1)
0 and p2 is not null or m3 = 0 and p3 is not

where not (m2
null or
m4 = 0 and p4 is not null or m5 = 0 and p5 is not
null);

/tmp/cat/
/tmp/cata/
/tmp/catb/
/usr/local/
/var/cache/

Elapsed: 00:00:13.68
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A solution with not exists is faster than the query from Listing 12-23;
nevertheless the latter one is based on some assumptions while the former
is a more generic approach. Most of the time for a query with analytics was
spent on sorting. Also it’s important to note that «sort_area_size» was set
to the maximal value and none of the queries required disk IO.

The last solution uses pattern matching.

select *
from t_path
match_recognize
(
order by path
measures
first(path) path
one row per match
pattern(x+)
define
x as path like first(path) || '%'
) mr;

/tmp/cat/
/tmp/cata/
/tmp/catb/
/usr/local/
/var/cache/

Elapsed: 00:00:00.89

Execution time is less than a second! The algorithm is very simple:
we check whether he first path from the current group is a subpath of the
current path; if not, then a new group starts.
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For Oracle versions before 12c, the optimal solution would be a PL/SQL
pipelined function with a single table scan and similar logic to pattern
matching. In other words, this quiz is yet another great example when the
cursor for loop may be a better solution than a vanilla SQL.

Resemblance Group

Combine rows into a resemblance group according to this logic: we move
across all rows from min to max and mark the current row if there is a row
in the group such as the difference between its value and current value is
not more than 1.

For the data below all the rows should be in the group except those
with ID =6 and ID = 8.

create table t resemblance(id, value) as
(select 1, 1 from dual

union all select 2, 2 from dual
union all select 3, 2.5 from dual
union all select 4, 3.4 from dual
union all select 5, 0.4 from dual
union all select 6, 5 from dual
union all select 7, -0.5 from dual
union all select 8, -2 from dual
union all select 9, -1 from dual
union all select 10, 3 from dual
union all select 11, 4 from dual
union all select 12, 5 from dual);

The 12th row is part of the group even though its value equals to the
6th row, which has not been marked. That is because the group contained
11th row with a value = 4 when we were checking the 12th row.
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Solution

For each element in the group there is another element such as a
difference between the two is not more than 1; thus, according to
transitivity law we can check a current element only with lower and upper
bounds before adding it into the group.

In pure SQL this logic can be implemented using an iterative model.

select *
from t_resemblance
model
ignore nav
dimension by (row_number() over (order by id) id)
measures(value, 0 mi, 0 ma, 0 flag)
rules iterate (1e9) until value[iteration number + 2] = 0
(
flag[iteration _number + 1] =
case when value[iteration number + 1] between
mi[iteration number] - 1 and ma[iteration number] + 1
or iteration number = 0
then 1 end,
mi[iteration number + 1] =
decode(flag[iteration number + 1], 1, least(mi[iteration_
number],
value[iteration number + 1]), mi[iteration number]),
ma[iteration number + 1] =
decode(flag[iteration number + 1], 1, greatest(ma[iteration
number],
value[iteration number + 1]), ma[iteration number])

)5
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1D VALUE MI MA FLAG
1 1 0 1 1
2 2 0 2 1
3 2.5 0 2.5 1
4 3.4 0 3.4 1
5 4 0 3.4 1
6 5 0 3.4

7 -.5 -.5 3.4 1
8 -2 -.5 3.4

9 -1 -1 3.4 1
10 3 -1 3.4 1
11 4 -1 4 1
12 5 -1 5 1

12 rows selected.

An algorithm walks through the recordset and on each iteration
changes measures only for one row. It updates the upper and lower
bounds for the group and marks the current element.

Iterations are necessary because we have to update multiple measures for
each row. If we use rules with ANY instead, then the model would evaluate
the first rule for all rows and then the second rule for all rows and so on.

Taking into account the specific of the logic, we can try to approach a
solution using a pattern-matching clause but in this case we are facing a
couple of limitations.

o Ifwe use an aggregate function in the define clause
then it’s applied to all rows the including current row.
So we cannot compare current value with min/max
across values matched so far.
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o It’snot possible to use measures in the define clause
and moreover measure values for the previous row. The
reason is that measures are evaluated after a match is

found.

We can recall that we can use the next function but in this case we
need to apply it to shifted values by one row. This is demonstrated below
by using a new column vv instead of a value in the define clause.

select *
from (select t.*, lag(value, 1, value) over(order by id) wv
from (select id, value
from t_resemblance t
union all select null, null from dual) t)
match_recognize
(
order by id
measures
match_number() match,
classifier() cls,
min(x.value) mi,
max(x.value) ma
all rows per match
pattern((x|dummy)+)
define
x as (next(x.vv) »>= min(x.vv) - 1 and next(x.vv)
<= max(x.vv) + 1)
-- x as (next(x.vv) between min(x.vv) - 1 and max(x.vv) + 1)
) mr
where id is not null;
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ID  MATCH CLS MI MA VALUE W
1 1X 1 1 1 1
2 1X 1 2 2 1
3 1 X 1 2.5 2.5 2
4 1 X 1 3.4 3.4 2.5
5 1 X 4 3.4 4 3.4
6 1 DUMMY 4 3.4 5 .4
7 1 X -.5 3.4 -5 5
8 1 DUMMY -.5 3.4 -2 -.5
9 1 X -1 3.4 -1 -2

10 1X -1 3.4 3 -1

11 1 X -1 4 4 3

12 1X -1 5 5 4

12 rows selected.

We also have to add one additional row with a null ID value to properly
handle the last row in the original recordset. Functions min/max with
x.value as an argument were used to return lower and upper bounds
for each step, but this is for information purposes only. All the logic is
implemented in one line in the define clause. If we use the next function
with the between operator, then the query fails with an exception
“ORA-62508: illegal use of aggregates or navigation operators
in MATCH RECOGNIZE clause”; thatis why a rule with two conditions was
used instead.

The last thing to note about this task is that one more solution can be
implemented using a recursive subquery factoring, but a pattern-matching
solution is much more efficient.
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through baskets from a min to max identifier and allocate items according

to their priority. If some item was allocated to a specific basket, then it

cannot be allocated to any other basket. For every basket, the total amount

of the items cannot exceed the basket amount.

For the below data

with

baskets(basket id, basket amount) as

( select 100, 500000 from dual union all
select 200, 400000 from dual union all
select 300, 1000000 from dual

)s

inventory(item id, item amount) as

( select
select
select
select
select
select
select
select
select
select

)

1000001,
1000002,
1000003,
1000004,
1000005,
1000006,
1000007,
1000008,
1000009,
1000010,

50000 from dual union all

15000 from dual union all

250000 from dual union all
350000 from dual union all
45000 from dual union all

100500 from dual union all
200500 from dual union all
30050 from dual union all

400500 from dual union all
750000 from dual

eligibility(basket id, item id, priority level) as

( select 100, 1000003, 1 from dual union all
select 100, 1000004, 2 from dual union all
select 100, 1000002, 3 from dual union all
select 100, 1000005, 4 from dual union all
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select
select
select
select
select
select
select
select
select
select
select
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200, 1000004, 1 from
200, 1000003, 2 from
200, 1000001, 3 from
200, 1000005, 4 from
200, 1000007, 5 from
200, 1000006, 6 from
300, 1000002, 1 from
300, 1000009, 2 from
300, 1000010, 3 from
300, 1000006, 4 from
300, 1000008, 5 from

dual
dual
dual
dual
dual
dual
dual
dual
dual
dual
dual

The expected result is the following

100
100
100
100
200
200
200
200
200
200
300
300
300
300
300

vi B W N P O VT B W N R D W N R

15 rows selected.

368

1000003
1000004
1000002
1000005
1000004
1000003
1000001
1000005
1000007
1000006
1000002
1000009
1000010
1000006
1000008

union
union
union
union
union
union
union
union
union
union

all
all
all
all
all
all
all
all
all
all

ITEM_AMOUNT

500000
500000
500000
500000
400000
400000
400000
400000
400000
400000
1000000
1000000
1000000
1000000
1000000

250000
350000
15000
45000
350000
250000
50000
45000
200500
100500
15000
400500
750000
100500
30050

RESULT

250000
0
265000
310000
350000
0
400000
0
0
0
0
400500
0
501000
531050
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Solution

The main complexity of this task is that we need to track allocated times.
Otherwise the solution would be quite simple and similar to «Zeckendorf
representation». Also this detail makes it impossible to use pattern
matching for a solution.

We will use a joined recordset as a source so let’s introduce a factored
query t.

t(basket id, item id, basket amount, item amount,
priority level) as
( select e.basket id,
e.item id,
b.basket amount,
i.item_amount,
e.priority level
from eligibility e
join baskets b
on b.basket_id = e.basket_id
join inventory i
on i.item id = e.item id
order by basket_id, priority level)

Listing 12-24 shows how a task can be solved using a model clause.

Listing 12-24. Allocating items using model clause

select *

from t

model

dimension by (basket id, priority level, item id)
measures (basket amount, item amount, 0 result)
rules
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(

result[any, any, any] order by basket id, priority level,
item id =
case when max(result)[any, any, cv(item id)] = 0 and
nvl(max(result)[cv(basket id),priority level
< cv(priority level),any],0) +
item amount[cv(basket id),cv(priority level),
cv(item id)]
<= max(basket_amount)[cv(basket id),cv(priority_
level),any]
then nvl(max(result)[cv(basket id),priority level
< cv(priority level),any],0) +
item amount[cv(basket id),cv(priority level),
cv(item id)]
else 0
end

)

order by 1, 2;

The combination of basket_id and priority_level is enough for unique
addressing but item_id has been added to the dimensions so that we can
figure out whether a specific item has been used or not. The entire logic is
implemented in one compact rule but it uses a few aggregates with various
addressing, which makes a solution not quite efficient.

We may note that it’s possible to use an approach similar to the one
for the previous quiz “Resemblance group” when we iterated through
recordset in a specific order and calculated several measures for each row.
In this case measures are is_used - flag, which identifies whether a specific
item has been allocated to a specific basket or not, total - running total for
each basket and str - concatenation of allocated items. Implementation
may be done using an iterative model (like for previous task) or recursive
subquery factoring. The latter is shown in Listing 12-25.
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Listing 12-25. Allocating items using recursive subquery factoring

with t0 as
(select t.*, row number() over (order by basket id,
priority level) rn
from t),
rec (basket id, item id, basket amount, item amount,
priority level,
rn, total, is used, str) as
(select t.basket id, t.item id, t.basket amount,
t.item amount, t.priority level, t.rn,
case when t.item amount <= t.basket_amount
then t.item amount else 0 end,
case when t.item amount <= t.basket amount then 1 end,
cast(case when t.item amount <= t.basket amount
then '," || t.item_id end as varchar2(4000))
from t0 t where rn = 1
union all
select t.basket id, t.item_id, t.basket amount,
t.item amount, t.priority level, t.rn,
case when decode(t.basket id, r.basket id, r.total, 0)
+ t.item_amount <= t.basket_amount
and instr(r.str, t.item id) = 0
then decode(t.basket id, r.basket id, r.total, 0)
+ t.item _amount
else decode(t.basket id, r.basket id, r.total, 0)
end,
case when decode(t.basket id, r.basket id, r.total, 0)
+ t.item_amount <= t.basket_amount
and instr(r.str, t.item id) = 0
then 1
end,
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case when decode(t.basket id, r.basket id, r.total, 0)
+ t.item_amount <= t.basket_amount
and instr(r.str, t.item id) = 0
then r.str || '," || t.item_id
else r.str
end
from to t
join rec r on t.rn = r.1n + 1)
select * from rec;

Concatenation of allocated items is used to check whether a current
item has been allocated or not, but we could have used a collection instead
of a string to avoid limitations of varchar2 length. Anyway, we have to
populate a list of used items for each row, which has negative impact on
memory consumption and overall performance.

Although a solution with a model is quite concise, the performance is
reasonable for relatively small data volumes - around thousands of rows.
Performance of a recursive subquery factoring may be improved if you
insert t0 into a temporary table with index by rn so that Oracle accesses
only a single row by index on each iteration.

The most efficient solution would be PL/SQL function that uses a
cursor for loop and an associative array of allocated items for the fastest
check to determine whether an item was allocated or not.

Longest Increasing Subsequence

The longest increasing subsequence problem is to find a subsequence of a
given sequence in which the subsequence's elements are in sorted order,
lowest to highest, and in which the subsequence is as long as possible. This
subsequence is not necessarily contiguous. With adaptation to a database
we will be looking for the longest subsequence in a sequence or rows.
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For example, for sequence
14, 15, 9, 11, 16, 12, 13
The expected result is
9, 11, 12, 13

For simplicity we will be deriving the length of the longest increasing
subsequence without returning the subsequence itself. For the above data
the correct answer is 4.

Solution

Unlike all previous tasks let’s start with a PL/SQL approach. The problem
can be solved in a quite efficient way using dynamic programming.

So, let’s assume that we need to calculate length - L of a subsequence
for a current element and it’s already calculated for elements analyzed
so far. In such a case, the L for the current element is max(L) across all
previous elements, which are less than current element plus 1. This may
sound a bit complicated but implementation is fairly simple. Let’s reuse
type numbers from the section “Unnesting Collections” and table tmp
from the section “Iterative-Like computations,” Ivl stays for length on
current step, x is order, and num is a value.

declare

t numbers := numbers(14, 15, 9, 11, 16, 12, 13);
begin

delete from tmp;

for i in 1 .. t.count loop

insert into tmp
(1vl, x, num)
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values
((select nvl(max(lvl), 0) + 1 from tmp where num < t(i)),

i, t(1));
end loop;

end;
/

PL/SQL procedure successfully completed.

select * from tmp;

7 rows selected.

To get a max(Ivl) for all elements we need to scan the tmp table.
Another option is using a PL/SQL variable and updating it on each
iteration. Given that for each element we scan all previous elements, the
computational complexity of the algorithm is O(rn?). Also the necessity
to scan all previous elements makes implementation using recursive
subquery factoring not reasonable; please check the section “Iterative-Like
computations” for additional details.

Back to PL/SQL, an algorithm can be improved if we use an auxiliary
array that will contain the longest common subsequence and will be
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refreshed on each iteration. Refresh is implemented according to the
next principle: we look up for the max value that is less than the current
value and put the current value after the found value. The binary search
runs in logarithmic time O(log,n), thus total computational complexity is
O(n*log,n).

declare
X numbers :

numbers(14, 15, 9, 11, 16, 12, 13);

m numbers := numbers();
1 int;
newl int;

v varchar2(4000);
-- index of the greatest element lower than p in array M
function f(p in number) return int as

lo int;

hi int;

mid int;
begin

lo := 1;

hi := 1;

while lo <= hi loop
mid := ceil((lo + hi) / 2);
if x(m(mid)) < p then lo := mid + 1; else hi := mid - 1;
end if;
end loop;
return lo;
end;
begin
m.extend(x.count);
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1 :=0;

for i in 1 .. x.count loop
newl := f(x(i));
m(newl) := i;

if newl > 1 then 1 := newl; end if;

vii= ',
for jin 1 .. 1 loop
vi=v [ x(n(d));
end loop;
dbms output.put line(i || ' ' || v);
end loop;
end;

14
14 15
9 15
9 11
9 11 16
9 11 12

9 11 12 13

~N o1 bW N R

PL/SQL procedure successfully completed.

The l is the length of the longest increasing subsequence on each
iteration.
SQL implementation can be done using the model clause.

with t(id, value) as
(select rownum, column value from table(numbers(14, 15, 9, 11,
16, 12, 13)))
select *
from t
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model

dimension by (id, value)

measures(0 1)

(1[any, any] order by id = nvl(max(1l)[id < cv(id),value
< cv(value)],0) + 1)

order by 1;

The approach is similar to the first solution in PL/SQL while there is
no way to implement a second solution on pure SQL as efficient as using
PL/SQL. When we use the model we work with a flat dataset containing
columns and rows (even though we consider it as a multidimensional
array), and it’s not possible to use any auxiliary data structures to optimize
the solution.

Quine

The last quiz is just for fun rather than to demonstrate Oracle SQL features.
Quine is a program that takes no input and produces a copy of its own
source code as its only output. You can find a lot of solutions on the
Internet for various programming languages, and I will not focus on a
PL/SQL solution where the approach is quite similar to Pascal language,
for example. It’s a bit more interesting to demonstrate SQL approaches.

Solution

One of the requirements is that the program (in our case, SQL query)
cannot access external sources to read its code. So the query below cannot
be treated as a complete solution.
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set pagesize 0 linesize 90

select sql text||';'from v$sqlarea join v$session using(sql id)
where sid=userenv('sid");
select sql text||';'from v$sqlarea join v$session using(sql id)
where sid=userenv('sid');

On the other hand, the two following solutions satisfy all requirements.

select substr(rpad(1,125,"'||chr(39)),26)from
dual;select substr(rpad(1,125,"'||chr(39)),26)from
dual;

select substr(rpad(1,125,"'||chr(39)),26)from
dual;select substr(rpad(1,125,"'||chr(39)),26)from
dual;

select

replace('@''[@"||chr(93)||""")from dual;','@',q'[select
replace('@''[@"||chr(93)||""")from dual;','@",q]")from dual;
select

replace('@''[@'||chr(93)||""")from dual;','@",q"[select
replace('@''[@"||chr(93)||""")from dual;','@",q]")from dual;

Maybe you can write shorter quine in Oracle SQL?

Summary

It was demonstrated using selected tasks that Oracle-specific SQL is much
more powerful than standard SQL, and some tasks can be solved in a
highly scalable way with very little code. I'd especially like to highlight a
new Oracle 12c feature - pattern matching, which makes it possible to
solve various tasks in a very efficient manner that otherwise would require
alot of PL/SQL code.
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CHAPTER 12 SOLVING SQL QUIZZES

Some complex tasks can be solved using recursive subquery factoring
or a model clause with competitive performance in compare to PL/SQL.
Both approaches do not require collections of objects unlike the PL/SQL
approach with pipelined functions. Advantages of the model are concise
code and great scalability when using partitioning and parallel execution.
Pros for recursive subquery factoring are execution in the scope of the SQL
engine, and there is no need for context switches on each iteration.

If, however, you need to implement a relatively complex algorithm
that may require additional data structures and control of execution, then
PL/SQL tends to be the preferable approach. But when you switch to
procedural language to work with data, you always should have an answer
why it’s better than SQL for your particular task. The last thing to note: if
you have to implement some intensive computations that require a lot of
CPU, then external libraries and implementation using C can be the best
choice.

Details really matter, so you have to take into account the specifics of a
particular task and compare different approaches for your Oracle version
before making a decision about the preferable approach.
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APPENDIX A

Useful Oracle Links

1. A LookUnder The Hood of CBO: THE 10053 Event

http://www.centrexcc.com/A%20Look%20under’%20
the%20Ho0d%2001%20CB0%20-%20the%2010053%20
Event.pdf

2. Closing The Query Processing Loop in Oracle 11g
http://www.vldb.org/pvldb/1/1454178.pdf
3. The Oracle Optimizer Explain the Explain Plan

http://www.oracle.com/technetwork/database/
bi-datawarehousing/twp-explain-the-explain-
plan-052011-393674.pdf

4. Query Optimization in Oracle Databasel0g Release 2

http://www.oracle.com/technetwork/database/
bi-datawarehousing/twp-general-query-
optimization-10gr-130948.pdf

5. SQL Sucks

http://www.nocoug.org/download/2006-08/S0L
Sucks_NoCOUG Journal Article Part 2.pdf

6. Explaining the EXPLAIN PLAN
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7.

8.

https://nocoug.files.wordpress.com/2014/08/
nocoug_journal 201408.pdf

Universality in Elementary Cellular Automata
http://www.complex-systems.com/pdf/15-1-1.pdf

Absolutely Typical - The Whole Story on Types and
How They Power PL/SQL Interoperability

https://technology.amis.nl/wp-content/
uploads/images/AbsolutelyTypical UKOUG2011_
jellema.zip

Doing SQL from PL/SQL: Best and Worst Practices

http://www.oracle.com/technetwork/database/
features/plsql/overview/doing-sql-from-
plsql-129775.pdf
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A

Adjacency lists model, 119
Aggregate functions
atomic type result, 104
Cartesian join, 117
collect function, 105
concatenate collection
elements, 104
cube, 114
definition, 103
EAV model, 107
grouping and

grouping id, 115-117

parsing pivot XML, 110
rollup, 114
UDAG, 106
unpivot operator, 112
Analytic functions
aggregate functions, 94
avoiding joins, 88-89
definition, 85
differences and
interchangeability
max date, 99-100
max value
partition, 98
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unbounded range, 98
fetch termination
PL/SQL function, 262-263
recursive subquery
factoring, 257, 259, 261
row_number, 248, 250, 252,
254-255
sum, 255-256
transaction, 247
types and function, 261-262
vs. joins
approaches, 96
execution plans, 97-98
last_value and ignore nulls,
100-101
limitations, 92
listagg and stragg, 94-95
logic implementation, 89-90
order by, 86
partition by part, 86
query rewriting, 87
ANSI joins
Cloudera Impala, 14
cross join, 6
demonstration tables, 6
full outer join, 10
inner join
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ANSTI joins (cont.)
equality condition, 7, 8
non-equality predicate, 8
left outer join, 9
limitations, 61
pre-join predicates,
inner table, 21
right outer join, 9
Anti joins, 13

B

Baskets
model clause, 369-370
pattern matching, 369
recursive subquery factoring,
371-372
Built-in access method
dbms_hprof, 278-279
PL/SQL function, 277-278
recursive subquery
factoring, 275, 277
trivial solution, 273

C

Connect by clause
adjacency lists model, 119

cycle detection, “prior id_parent

isnotnull’; 134-135
cycle identification, 131

depth-first search approach, 121

directed graphs, 125
Fibonacci numbers
generation, 131
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generating sequences, 126
handling elements, recursive
sequence, 129
and joins, 122-123
level and rownum,
differences, 137
ordering siblings, 121
parent-child relationships, 119
pseudocolumns, 119, 135
recursive sequence, generating
values, 128
sys_connect_by_path function,
121
sys_guid, 132
recursive function, 127
Connected components, 308-310
Cycles
building hierarchy, 153-155
detection
ID, 151
ID_PARENT, 152
manual implementation of
logic, 155-156

D

Deterministic Finite Auto
(DFA), 214, 235

E,F
Elementary cellular
automaton, 236
Entity-attribute-value (EAV) model
flattening



group by, 109
pivot operator, 110
Equi joins, 10

G

Graph theory, 308
Greedy algorithm, 349

H

Heuristic-based transformations, 69
final query, 75
view merging, 74-75
Hierarchical queries, see Connect
by clause

Iterative-like computations
built-in access method, 273-279
iterative model, 272
recursive subquery factoring, 272

J, K

Joins
ANSI (see ANSI joins)
anti, 13
named columns, 12
natural, 11
outer natural, 11
phone calls, 288
phone codes, 289-298
semi, 12

INDEX

L

Logical execution order of query
clauses
aggregate and analytic
functions
inline view, 228-229
mixing, 226-227
nesting, 227
clarifications, 218
coding, wrong assumptions
predicate evaluation,
221-222
query fail, 219-221
scalar subquery caching,
223-225,232-233
unique values,
correlated scalar
subquery, 230-231
inline views, 217
Longest increasing
subsequence, 372-373

match_recognize
aggregate functions, 199
analytic functions, 199, 204-206
backtracking, 215-216
DFA, 214
fibonacci numbers, 206-207
filling data gaps, 208-209
FINITE AUTOMATON, 200
NFA, 214
pattern matching, 209-212
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INDEX

match_recognize (cont.)

pattern variables, 202-203
query plans, 212-214

Model clause

aggregate functions, 178-182
analytic functions, 177-178
automatic rule
ordering, 168-169
bisection method, 172-173
checking convergence, 171-172
cyclic rule and automatic
order, 170-171
dimension, 161, 163
measures, 162
order by id, 166-167
ORDERED/ACYCLIC
models, 170
parallel execution
model query, 193-194
pipelined function, 194-195
statistics, 196
partitions, 161
performance, 187-192
positional dimension
reference, 164
presenty, presentnnv and
nvl2, 176-177
recursive measure, 167-168
recursive sequences, 182-186
reference models, 174
SQL capabilities, 183
symbolic dimension
reference, 164, 166
unique single reference, 175
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N

Named columns join, 12
Natural join, 11
N consequent 1s, 325
Nested aggregate
functions, 230
Next branch
aggregate function, 340
analytic functions, 333, 336
applying logic, descendants,
337-338, 341
joins, 332-333, 339
model clause, 334-335
Oracle 12c¢, 339-340
pattern matching, 341
windowing clause, 337
Nondeterministic Finite Auto
(NFA), 214

O

Oracle-specific syntax

case expression, 22

full join, 16

inner join, 15

outer joins and presence
of (+), 19

pre-join and post-join
predicates, 16-18

pre-join predicates, inner
table, 21

trick with rowid, outer
table, 21

ORDERED/ACYCLIC models, 170



Ordering dependencies

DAGs, 314

directed acyclic graph, 314-315

PL/SQL, 316-319
OR-expansion

final query, 72

manual, 72

and RBO, 73

SQL feature hierarchy, 70
Outer natural join, 11

P

Pattern matching, 349
Pattern variables, 202-203
PL/SQL
combinatorial problems
input set, 280
join, 281, 283-284
recursive subquery
factoring, 286-287
UDE 284-286
iterative-like computations (see
Iterative-like
computations)
joins (see Joins)
performance and scalability,
245
sort operations
low cardinality dimensions,
264-269
multiple, 269-271
subquery limitations, 299-302

INDEX

Pseudocolumn generation
level and rownum, 135-136
level and rownum,

differences, 137
rules, 135

Q

Query transformation
ANTTjoin, 67-38
cost-based, 69
checking existence for

dimension IDs

fast version, 78-79

separately, 77

slow version, 77-78
column projection, 80
disabled transformations, 75
filter operation, 79
heuristic-based, 69
join methods, 79
logical optimization, 69
OR-expansion, 71
query optimizer components, 69
RBO and OR-expansion, 73
SQL optimizer tracing, 68

R

Random subset, 342
Recursive subquery factoring
algorithm, 140
building hierarchies, 140
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INDEX

Recursive subquery factoring (cont.)
connect by result, 141
cycles, 151
definition, 139
finding root, 144
limitations, 156-158
recursive sequences
auxiliary columns, 143
bisection method, 144
collection column, 143
traversing hierarchies
breadth-first and depth-first
search, 147-148
function stop_at, 146
query hierarchical data, 146
Resemblance group, 362

S

Semi joins, 12
Solving SQL quizzes
baskets (see Baskets)
connected components
PL/SQL approach, 311-314
SQL approach, 310
converting into decimal
arbitrary alphabet in PL/
SQL, 307
hexadecimal value, 306
string in arbitrary
alphabet, 306
covering ranges, 347
longest increasing
subsequence, 372
N consequent 1s, 325

388

next branch (see Next branch)
next value, 328
ordering dependencies, 314
percentile with shift
analytic functions, 323-324
percentile_cont function, 320
self join and analytic
functions, 321-322
self join and
percentile_cont, 321
quine, 377-378
random subset, 342
resemblance group, 362
top paths (see Top paths)
Zeckendorf representation (see
Zeckendorfrepresentation)
SQL Optimizer tracing, 68
Subquery, 299-302

T

Top paths
filtering
join/subquery, 357-358
lateral and group
by, 358-359
tricky analytics, 359, 361
pattern matching, 361
Transformation engine, 69
Turing completeness
bubble sort algorithm
model clause, 241-242
single while loop, 240-241
string of
symbols, 239-240



INDEX

Church-Turing thesis, 235 Z
data-manipulation
b Zeckendorf representation
rules, 235
connect by, 350-351
Rule 110

fibonacci number, 349-350
greedy algorithm, 349
model clause, 354

evaluation, 236-237
recursive subquery
factoring, 237-238

attern matching, 355
set of rules, 236 P &

recursive subquery
factoring, 353

U, Vs W; X, Y recursive subquery factoring
User-defined aggregates (UDAG), and cross apply, 351-353
106, 118, 216 scalar subquery, 352, 355
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